算法09 五大查找之:哈希查找

作者:nnngu
GitHub:https://github.com/nnngu
博客园:http://www.cnblogs.com/nnngu
简书:https://www.jianshu.com/users/1df20d76ea5c
知乎:https://www.zhihu.com/people/nnngu/posts


前面的几篇文章分别总结了:顺序查找二分查找索引查找二叉排序树。这一篇文章要总结的是五大查找的最后一个:哈希查找(也称为散列查找)。提起哈希,我的第一印象就是java中的Hashtable类,它是由 key/value 的键值对组成的集合,它就是应用了哈希技术。

那什么是哈希查找呢?在弄清楚什么是哈希查找之前,我们要弄清楚哈希技术,哈希技术是在记录的存储位置和记录的 key 之间建立一个确定的映射 f(),使得每个 key 对应一个存储位置 f(key)。若查找集合中存在这个记录,则必定在 f(key) 的位置上。哈希技术既是一种存储方法,也是一种查找方法。

六种哈希函数 f(key) 的构造方法:

1、直接定址法

哈希地址:f(key) = a*key+b (a,b为常数)

这种方法的优点是:简单,均匀,不会产生冲突。但是需要事先知道 key 的分布情况,适合查找表较小并且连续的情况。

2、数字分析法

比如我们的11位手机号码“136xxxx5889”,其中前三位是接入号,一般对应不同运营公司的子品牌,如130是联通如意通,136是移动神州行等等。中间四位表示归属地。最后四位才是用户号。

若我们现在要存储某家公司员工登记表,如果用手机号码作为 key,那么极有可能前7位都是相同的,所以我们选择最后四位作为 f(key) 就是不错的选择。

3、平方取中法

故名思义,比如 key 是1234,那么它的平方就是1522756,再抽取中间的3位就是227作为 f(key) 。

4、折叠法

折叠法是将 key 从左到右分割成位数相等的几个部分(最后一部分位数不够可以短些),然后将这几部分叠加求和,并按哈希表的表长,取后几位作为 f(key) 。

比如我们的 key 是 9876543210,哈希表的表长为3位,我们将 key 分为4组,987|654|321|0 ,然后将它们叠加求和 987+654+321+0=1962,再取后3位即得到 f(key) = 962 。

5、除留余数法

哈希地址:f(key) = key mod p (p<=m) m为哈希表表长。

这种方法是最常用的哈希函数构造方法。下面的代码中也使用了这种方法。

6、随机数法

哈希地址:f(key) = random(key)

这里 random 是随机函数,当 key 的长度不等时,采用这种方法比较合适。

哈希函数冲突的两种解决方法:

我们设计得再好的哈希函数也不可能完全避免冲突,当我们使用哈希函数后发现有 key1 != key2,但却有 f(key1) = f(key2) ,即发生冲突。

1、开放定址法:

开放定址法就是一旦发生了冲突,就去寻找下一个空的哈希地址,只要哈希表足够大,空的哈希地址总是能找到,然后将记录插入。这种方法是最常用的解决冲突的方法。下面的代码中也使用了这种方法。

2、链地址法:

链地址法不做详细展开。

代码:

HashSearch.java

import java.io.IOException;
import java.util.Scanner;

public class HashSearch {
    // 初始化哈希表
    static int hashLength = 7;
    static int[] hashTable = new int[hashLength];

    // 原始数据
    static int[] list = new int[]{13, 29, 27, 28, 26, 30, 38};

    public static void main(String[] args) throws IOException {
        System.out.println("*******哈希查找*******");

        // 创建哈希表
        for (int i = 0; i < list.length; i++) {
            insert(hashTable, list[i]);
        }
        System.out.println("展示哈希表中的数据:" + display(hashTable));

        while (true) {
            // 哈希表查找
            System.out.print("请输入要查找的数据:");
            int data = new Scanner(System.in).nextInt();
            int result = search(hashTable, data);
            if (result == -1) {
                System.out.println("对不起,没有找到!");
            } else {
                System.out.println("数据的位置是:" + result);
            }
        }
    }

    /**
     * 方法:哈希表插入
     */
    public static void insert(int[] hashTable, int data) {
        // 哈希函数,除留余数法
        int hashAddress = hash(hashTable, data);

        // 如果不为0,则说明发生冲突
        while (hashTable[hashAddress] != 0) {
            // 利用 开放定址法 解决冲突
            hashAddress = (++hashAddress) % hashTable.length;
        }

        // 将待插入值存入字典中
        hashTable[hashAddress] = data;
    }

    /**
     * 方法:哈希表查找
     */
    public static int search(int[] hashTable, int data) {
        // 哈希函数,除留余数法
        int hashAddress = hash(hashTable, data);

        while (hashTable[hashAddress] != data) {
            // 利用 开放定址法 解决冲突
            hashAddress = (++hashAddress) % hashTable.length;
            // 查找到开放单元 或者 循环回到原点,表示查找失败
            if (hashTable[hashAddress] == 0 || hashAddress == hash(hashTable, data)) {
                return -1;
            }
        }
        // 查找成功,返回下标
        return hashAddress;
    }

    /**
     * 方法:构建哈希函数(除留余数法)
     *
     * @param hashTable
     * @param data
     * @return
     */
    public static int hash(int[] hashTable, int data) {
        return data % hashTable.length;
    }

    /**
     * 方法:展示哈希表
     */
    public static String display(int[] hashTable) {
        StringBuffer stringBuffer = new StringBuffer();
        for (int i : hashTable) {
            stringBuffer = stringBuffer.append(i + " ");
        }
        return String.valueOf(stringBuffer);
    }
}

运行结果:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 160,165评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,720评论 1 298
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,849评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,245评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,596评论 3 288
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,747评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,977评论 2 315
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,708评论 0 204
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,448评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,657评论 2 249
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,141评论 1 261
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,493评论 3 258
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,153评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,108评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,890评论 0 198
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,799评论 2 277
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,685评论 2 272

推荐阅读更多精彩内容