8.Countdownlatch

Countdownlatch

此小节介绍几个与锁有关的有用工具。

闭锁(Latch)

闭锁(Latch):一种同步方法,可以延迟线程的进度直到线程到达某个终点状态。通俗的讲就是,一个闭锁相当于一扇大门,在大门打开之前所有线程都被阻断,一旦大门打开所有线程都将通过,但是一旦大门打开,所有线程都通过了,那么这个闭锁的状态就失效了,门的状态也就不能变了,只能是打开状态。也就是说闭锁的状态是一次性的,它确保在闭锁打开之前所有特定的活动都需要在闭锁打开之后才能完成。

CountDownLatch是JDK 5+里面闭锁的一个实现,允许一个或者多个线程等待某个事件的发生。CountDownLatch有一个正数计数器,countDown方法对计数器做减操作,await方法等待计数器达到0。所有await的线程都会阻塞直到计数器为0或者等待线程中断或者超时。

CountDownLatch的API如下。

  • public void await() throws InterruptedException
  • public boolean await(long timeout, TimeUnit unit) throws InterruptedException
  • public void countDown()
  • public long getCount()

其中getCount()描述的是当前计数,通常用于调试目的。

下面的例子中描述了闭锁的两种常见的用法。

package xylz.study.concurrency.lock;

import java.util.concurrent.CountDownLatch;

public class PerformanceTestTool {

​ public long timecost(final int times, final Runnable task) throws InterruptedException {
​ if (times <= 0) throw new IllegalArgumentException();
​ final CountDownLatch startLatch = new CountDownLatch(1);
​ final CountDownLatch overLatch = new CountDownLatch(times);
​ for (int i = 0; i < times; i++) {
​ new Thread(new Runnable() {
​ public void run() {
​ try {
​ startLatch.await();
​ //
​ task.run();
​ } catch (InterruptedException ex) {
​ Thread.currentThread().interrupt();
​ } finally {
​ overLatch.countDown();
​ }
​ }
​ }).start();
​ }
​ //
​ long start = System.nanoTime();
​ startLatch.countDown();
​ overLatch.await();
​ return System.nanoTime() - start;
​ }

}

在上面的例子中使用了两个闭锁,第一个闭锁确保在所有线程开始执行任务前,所有准备工作都已经完成,一旦准备工作完成了就调用startLatch.countDown()打开闭锁,所有线程开始执行。第二个闭锁在于确保所有任务执行完成后主线程才能继续进行,这样保证了主线程等待所有任务线程执行完成后才能得到需要的结果。在第二个闭锁当中,初始化了一个N次的计数器,每个任务执行完成后都会将计数器减一,所有任务完成后计数器就变为了0,这样主线程闭锁overLatch拿到此信号后就可以继续往下执行了。

根据前面的happend-before法则可以知道闭锁有以下特性:

内存一致性效果:线程中调用 countDown() 之前的操作 happen-before****** 紧跟在从另一个线程中对应 await() 成功返回的操作。

在上面的例子中第二个闭锁相当于把一个任务拆分成N份,每一份独立完成任务,主线程等待所有任务完成后才能继续执行。这个特性在后面的线程池框架中会用到,其实FutureTask就可以看成一个闭锁。后面的章节还会具体分析FutureTask的。

同样基于探索精神,仍然需要“窥探”下CountDownLatch里面到底是如何实现await*countDown的。

首先,研究下await()方法。内部直接调用了AQSacquireSharedInterruptibly(1)

public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
​ if (Thread.interrupted())
​ throw new InterruptedException();
​ if (tryAcquireShared(arg) < 0)
​ doAcquireSharedInterruptibly(arg);
}

前面一直提到的都是独占锁(排它锁、互斥锁),现在就用到了另外一种锁,共享锁。

所谓共享锁是说所有共享锁的线程共享同一个资源,一旦任意一个线程拿到共享资源,那么所有线程就都拥有的同一份资源。也就是通常情况下共享锁只是一个标志,所有线程都等待这个标识是否满足,一旦满足所有线程都被激活(相当于所有线程都拿到锁一样)。这里的闭锁CountDownLatch就是基于共享锁的实现。

闭锁中关于AQStryAcquireShared的实现是如下代码(java.util.concurrent.CountDownLatch.Sync.tryAcquireShared):

public int tryAcquireShared(int acquires) {
​ return getState() == 0? 1 : -1;
}

在这份逻辑中,对于闭锁而言第一次await时tryAcquireShared应该总是-1,因为对于闭锁CountDownLatch而言state的值就是初始化的count值。这也就解释了为什么在countDown调用之前闭锁的count总是>0。

private void doAcquireSharedInterruptibly(int arg)
​ throws InterruptedException {
​ final Node node = addWaiter(Node.SHARED);
​ try {
​ for (;;) {
​ final Node p = node.predecessor();
​ if (p == head) {
​ int r = tryAcquireShared(arg);
​ if (r >= 0) {
​ setHeadAndPropagate(node, r);
​ p.next = null; // help GC
​ return;
​ }
​ }
​ if (shouldParkAfterFailedAcquire(p, node) &&
​ parkAndCheckInterrupt())
​ break;
​ }
​ } catch (RuntimeException ex) {
​ cancelAcquire(node);
​ throw ex;
​ }
​ // Arrive here only if interrupted
​ cancelAcquire(node);
​ throw new InterruptedException();
}

上面的逻辑展示了如何通过await将所有线程串联并挂起,直到被唤醒或者条件满足或者被中断。整个过程是这样的:

    1. 将当前线程节点以共享模式加入AQSCLH队列中(相关概念参考这里这里)。进行2。
    2. 检查当前节点的前任节点,如果是头结点并且当前闭锁计数为0就将当前节点设置为头结点,唤醒继任节点,返回(结束线程阻塞)。否则进行3。
    3. 检查线程是否该阻塞,如果应该就阻塞(park),直到被唤醒(unpark)。重复2。
    4. 如果2、3有异常就抛出异常(结束线程阻塞)。

这里有一点值得说明下,设置头结点并唤醒继任节点setHeadAndPropagate。由于前面tryAcquireShared总是返回1或者-1,而进入setHeadAndPropagate时总是propagate>=0,所以这里propagate==1。后面唤醒继任节点操作就非常熟悉了。

private void setHeadAndPropagate(Node node, int propagate) {
​ setHead(node);
​ if (propagate > 0 && node.waitStatus != 0) {
​ Node s = node.next;
​ if (s == null || s.isShared())
​ unparkSuccessor(node);
​ }
}

从上面的所有逻辑可以看出countDown应该就是在条件满足(计数为0)时唤醒头结点(时间最长的一个节点),然后头结点就会根据FIFO队列唤醒整个节点列表(如果有的话)。

CountDownLatchcountDown代码中看到,直接调用的是AQSreleaseShared(1),参考前面的知识,这就印证了上面的说法。

*tryReleaseShared*中正是采用CAS操作减少计数(每次减-1)。

public boolean tryReleaseShared(int releases) {
​ for (;;) {
​ int c = getState();
​ if (c == 0)
​ return false;
​ int nextc = c-1;
​ if (compareAndSetState(c, nextc))
​ return nextc == 0;
​ }
}

整个CountDownLatch就是这个样子的。其实有了前面原子操作和AQS的原理及实现,分析CountDownLatch还是比较容易的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270

推荐阅读更多精彩内容