【死磕Java并发】-----J.U.C之并发工具类:CountDownLatch

此篇博客所有源码均来自JDK 1.8

在上篇博客中介绍了Java四大并发工具之一的CyclicBarrier,今天要介绍的CountDownLatch与CyclicBarrier有点儿相似。
CyclicBarrier所描述的是“允许一组线程互相等待,直到到达某个公共屏障点,才会进行后续任务",而CountDownLatch所描述的是”在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待“。在API中是这样描述的:

用给定的计数 初始化 CountDownLatch。由于调用了 countDown() 方法,所以在当前计数到达零之前,await 方法会一直受阻塞。之后,会释放所有等待的线程,await 的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用 CyclicBarrier。

CountDownLatch

CountDownLatch是通过一个计数器来实现的,当我们在new 一个CountDownLatch对象的时候需要带入该计数器值,该值就表示了线程的数量。每当一个线程完成自己的任务后,计数器的值就会减1。当计数器的值变为0时,就表示所有的线程均已经完成了任务,然后就可以恢复等待的线程继续执行了。

虽然,CountDownlatch与CyclicBarrier有那么点相似,但是他们还是存在一些区别的:

  1. CountDownLatch的作用是允许1或N个线程等待其他线程完成执行;而CyclicBarrier则是允许N个线程相互等待
  2. CountDownLatch的计数器无法被重置;CyclicBarrier的计数器可以被重置后使用,因此它被称为是循环的barrier

实现分析

CountDownLatch结构如下

CountDownLatch

通过上面的结构图我们可以看到,CountDownLatch内部依赖Sync实现,而Sync继承AQS。CountDownLatch仅提供了一个构造方法:

CountDownLatch(int count) : 构造一个用给定计数初始化的 CountDownLatch

    public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

sync为CountDownLatch的一个内部类,其定义如下:

    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        //获取同步状态
        int getCount() {
            return getState();
        }

        //获取同步状态
        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        //释放同步状态
        protected boolean tryReleaseShared(int releases) {
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

通过这个内部类Sync我们可以清楚地看到CountDownLatch是采用共享锁来实现的。

await()

CountDownLatch提供await()方法来使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断,定义如下:

    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

await其内部使用AQS的acquireSharedInterruptibly(int arg):

    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

在内部类Sync中重写了tryAcquireShared(int arg)方法:

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

getState()获取同步状态,其值等于计数器的值,从这里我们可以看到如果计数器值不等于0,则会调用doAcquireSharedInterruptibly(int arg),该方法为一个自旋方法会尝试一直去获取同步状态:

    private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    /**
                     * 对于CountDownLatch而言,如果计数器值不等于0,那么r 会一直小于0
                     */
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                //等待
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

countDown()

CountDownLatch提供countDown() 方法递减锁存器的计数,如果计数到达零,则释放所有等待的线程。

    public void countDown() {
        sync.releaseShared(1);
    }

内部调用AQS的releaseShared(int arg)方法来释放共享锁同步状态:

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

tryReleaseShared(int arg)方法被CountDownLatch的内部类Sync重写:

    protected boolean tryReleaseShared(int releases) {
        for (;;) {
            //获取锁状态
            int c = getState();
            //c == 0 直接返回,释放锁成功
            if (c == 0)
                return false;
            //计算新“锁计数器”
            int nextc = c-1;
            //更新锁状态(计数器)
            if (compareAndSetState(c, nextc))
                return nextc == 0;
        }
    }

总结

CountDownLatch内部通过共享锁实现。在创建CountDownLatch实例时,需要传递一个int型的参数:count,该参数为计数器的初始值,也可以理解为该共享锁可以获取的总次数。当某个线程调用await()方法,程序首先判断count的值是否为0,如果不会0的话则会一直等待直到为0为止。当其他线程调用countDown()方法时,则执行释放共享锁状态,使count值 - 1。当在创建CountDownLatch时初始化的count参数,必须要有count线程调用countDown方法才会使计数器count等于0,锁才会释放,前面等待的线程才会继续运行。注意CountDownLatch不能回滚重置。

关于共享锁的请参考:【死磕Java并发】-----J.U.C之AQS:同步状态的获取与释放

应用示例

示例仍然使用开会案例。老板进入会议室等待5个人全部到达会议室才会开会。所以这里有两个线程老板等待开会线程、员工到达会议室:

public class CountDownLatchTest {
    private static CountDownLatch countDownLatch = new CountDownLatch(5);

    /**
     * Boss线程,等待员工到达开会
     */
    static class BossThread extends Thread{
        @Override
        public void run() {
            System.out.println("Boss在会议室等待,总共有" + countDownLatch.getCount() + "个人开会...");
            try {
                //Boss等待
                countDownLatch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println("所有人都已经到齐了,开会吧...");
        }
    }

    //员工到达会议室
    static class EmpleoyeeThread  extends Thread{
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + ",到达会议室....");
            //员工到达会议室 count - 1
            countDownLatch.countDown();
        }
    }
    
    public static void main(String[] args){
        //Boss线程启动
        new BossThread().start();

        for(int i = 0 ; i < countDownLatch.getCount() ; i++){
            new EmpleoyeeThread().start();
        }
    }
}

运行结果:

此篇博客所有源码均来自JDK 1.8

在上篇博客中介绍了Java四大并发工具之一的CyclicBarrier,今天要介绍的CountDownLatch与CyclicBarrier有点儿相似。
CyclicBarrier所描述的是“允许一组线程互相等待,直到到达某个公共屏障点,才会进行后续任务",而CountDownLatch所描述的是”在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待“。在API中是这样描述的:

用给定的计数 初始化 CountDownLatch。由于调用了 countDown() 方法,所以在当前计数到达零之前,await 方法会一直受阻塞。之后,会释放所有等待的线程,await 的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用 CyclicBarrier。

![](file:///G:/weizhi/myKnowledge/temp/9c1d9b85-25a1-4d47-9504-0801ed772abd/128/index_files/2017021200001.png)

CountDownLatch是通过一个计数器来实现的,当我们在new 一个CountDownLatch对象的时候需要带入该计数器值,该值就表示了线程的数量。每当一个线程完成自己的任务后,计数器的值就会减1。当计数器的值变为0时,就表示所有的线程均已经完成了任务,然后就可以恢复等待的线程继续执行了。

虽然,CountDownlatch与CyclicBarrier有那么点相似,但是他们还是存在一些区别的:

  1. CountDownLatch的作用是允许1或N个线程等待其他线程完成执行;而CyclicBarrier则是允许N个线程相互等待
  2. CountDownLatch的计数器无法被重置;CyclicBarrier的计数器可以被重置后使用,因此它被称为是循环的barrier

实现分析

CountDownLatch结构如下

![](file:///G:/weizhi/myKnowledge/temp/9c1d9b85-25a1-4d47-9504-0801ed772abd/128/index_files/201702110002.jpg)

通过上面的结构图我们可以看到,CountDownLatch内部依赖Sync实现,而Sync继承AQS。CountDownLatch仅提供了一个构造方法:

CountDownLatch(int count) : 构造一个用给定计数初始化的 CountDownLatch

    public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

sync为CountDownLatch的一个内部类,其定义如下:

    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        //获取同步状态
        int getCount() {
            return getState();
        }

        //获取同步状态
        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        //释放同步状态
        protected boolean tryReleaseShared(int releases) {
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

通过这个内部类Sync我们可以清楚地看到CountDownLatch是采用共享锁来实现的。

await()

CountDownLatch提供await()方法来使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断,定义如下:

    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

await其内部使用AQS的acquireSharedInterruptibly(int arg):

    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

在内部类Sync中重写了tryAcquireShared(int arg)方法:

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

getState()获取同步状态,其值等于计数器的值,从这里我们可以看到如果计数器值不等于0,则会调用doAcquireSharedInterruptibly(int arg),该方法为一个自旋方法会尝试一直去获取同步状态:

    private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    /**
                     * 对于CountDownLatch而言,如果计数器值不等于0,那么r 会一直小于0
                     */
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                //等待
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

countDown()

CountDownLatch提供countDown() 方法递减锁存器的计数,如果计数到达零,则释放所有等待的线程。

    public void countDown() {
        sync.releaseShared(1);
    }

内部调用AQS的releaseShared(int arg)方法来释放共享锁同步状态:

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

tryReleaseShared(int arg)方法被CountDownLatch的内部类Sync重写:

    protected boolean tryReleaseShared(int releases) {
        for (;;) {
            //获取锁状态
            int c = getState();
            //c == 0 直接返回,释放锁成功
            if (c == 0)
                return false;
            //计算新“锁计数器”
            int nextc = c-1;
            //更新锁状态(计数器)
            if (compareAndSetState(c, nextc))
                return nextc == 0;
        }
    }

总结

CountDownLatch内部通过共享锁实现。在创建CountDownLatch实例时,需要传递一个int型的参数:count,该参数为计数器的初始值,也可以理解为该共享锁可以获取的总次数。当某个线程调用await()方法,程序首先判断count的值是否为0,如果不会0的话则会一直等待直到为0为止。当其他线程调用countDown()方法时,则执行释放共享锁状态,使count值 - 1。当在创建CountDownLatch时初始化的count参数,必须要有count线程调用countDown方法才会使计数器count等于0,锁才会释放,前面等待的线程才会继续运行。注意CountDownLatch不能回滚重置。

关于共享锁的请参考:【死磕Java并发】-----J.U.C之AQS:同步状态的获取与释放

应用示例

示例仍然使用开会案例。老板进入会议室等待5个人全部到达会议室才会开会。所以这里有两个线程老板等待开会线程、员工到达会议室:

public class CountDownLatchTest {
    private static CountDownLatch countDownLatch = new CountDownLatch(5);

    /**
     * Boss线程,等待员工到达开会
     */
    static class BossThread extends Thread{
        @Override
        public void run() {
            System.out.println("Boss在会议室等待,总共有" + countDownLatch.getCount() + "个人开会...");
            try {
                //Boss等待
                countDownLatch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println("所有人都已经到齐了,开会吧...");
        }
    }

    //员工到达会议室
    static class EmpleoyeeThread  extends Thread{
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + ",到达会议室....");
            //员工到达会议室 count - 1
            countDownLatch.countDown();
        }
    }
    
    public static void main(String[] args){
        //Boss线程启动
        new BossThread().start();

        for(int i = 0 ; i < countDownLatch.getCount() ; i++){
            new EmpleoyeeThread().start();
        }
    }
}

运行结果:

此篇博客所有源码均来自JDK 1.8

在上篇博客中介绍了Java四大并发工具之一的CyclicBarrier,今天要介绍的CountDownLatch与CyclicBarrier有点儿相似。
CyclicBarrier所描述的是“允许一组线程互相等待,直到到达某个公共屏障点,才会进行后续任务",而CountDownLatch所描述的是”在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待“。在API中是这样描述的:

用给定的计数 初始化 CountDownLatch。由于调用了 countDown() 方法,所以在当前计数到达零之前,await 方法会一直受阻塞。之后,会释放所有等待的线程,await 的所有后续调用都将立即返回。这种现象只出现一次——计数无法被重置。如果需要重置计数,请考虑使用 CyclicBarrier。

[图片上传中。。。(1)]

CountDownLatch是通过一个计数器来实现的,当我们在new 一个CountDownLatch对象的时候需要带入该计数器值,该值就表示了线程的数量。每当一个线程完成自己的任务后,计数器的值就会减1。当计数器的值变为0时,就表示所有的线程均已经完成了任务,然后就可以恢复等待的线程继续执行了。

虽然,CountDownlatch与CyclicBarrier有那么点相似,但是他们还是存在一些区别的:

  1. CountDownLatch的作用是允许1或N个线程等待其他线程完成执行;而CyclicBarrier则是允许N个线程相互等待
  2. CountDownLatch的计数器无法被重置;CyclicBarrier的计数器可以被重置后使用,因此它被称为是循环的barrier

实现分析

CountDownLatch结构如下

[图片上传中。。。(2)]

通过上面的结构图我们可以看到,CountDownLatch内部依赖Sync实现,而Sync继承AQS。CountDownLatch仅提供了一个构造方法:

CountDownLatch(int count) : 构造一个用给定计数初始化的 CountDownLatch

    public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

sync为CountDownLatch的一个内部类,其定义如下:

    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        //获取同步状态
        int getCount() {
            return getState();
        }

        //获取同步状态
        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        //释放同步状态
        protected boolean tryReleaseShared(int releases) {
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

通过这个内部类Sync我们可以清楚地看到CountDownLatch是采用共享锁来实现的。

await()

CountDownLatch提供await()方法来使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断,定义如下:

    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

await其内部使用AQS的acquireSharedInterruptibly(int arg):

    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

在内部类Sync中重写了tryAcquireShared(int arg)方法:

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

getState()获取同步状态,其值等于计数器的值,从这里我们可以看到如果计数器值不等于0,则会调用doAcquireSharedInterruptibly(int arg),该方法为一个自旋方法会尝试一直去获取同步状态:

    private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    /**
                     * 对于CountDownLatch而言,如果计数器值不等于0,那么r 会一直小于0
                     */
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                //等待
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

countDown()

CountDownLatch提供countDown() 方法递减锁存器的计数,如果计数到达零,则释放所有等待的线程。

    public void countDown() {
        sync.releaseShared(1);
    }

内部调用AQS的releaseShared(int arg)方法来释放共享锁同步状态:

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

tryReleaseShared(int arg)方法被CountDownLatch的内部类Sync重写:

    protected boolean tryReleaseShared(int releases) {
        for (;;) {
            //获取锁状态
            int c = getState();
            //c == 0 直接返回,释放锁成功
            if (c == 0)
                return false;
            //计算新“锁计数器”
            int nextc = c-1;
            //更新锁状态(计数器)
            if (compareAndSetState(c, nextc))
                return nextc == 0;
        }
    }

总结

CountDownLatch内部通过共享锁实现。在创建CountDownLatch实例时,需要传递一个int型的参数:count,该参数为计数器的初始值,也可以理解为该共享锁可以获取的总次数。当某个线程调用await()方法,程序首先判断count的值是否为0,如果不会0的话则会一直等待直到为0为止。当其他线程调用countDown()方法时,则执行释放共享锁状态,使count值 - 1。当在创建CountDownLatch时初始化的count参数,必须要有count线程调用countDown方法才会使计数器count等于0,锁才会释放,前面等待的线程才会继续运行。注意CountDownLatch不能回滚重置。

关于共享锁的请参考:【死磕Java并发】-----J.U.C之AQS:同步状态的获取与释放

应用示例

示例仍然使用开会案例。老板进入会议室等待5个人全部到达会议室才会开会。所以这里有两个线程老板等待开会线程、员工到达会议室:

public class CountDownLatchTest {
    private static CountDownLatch countDownLatch = new CountDownLatch(5);

    /**
     * Boss线程,等待员工到达开会
     */
    static class BossThread extends Thread{
        @Override
        public void run() {
            System.out.println("Boss在会议室等待,总共有" + countDownLatch.getCount() + "个人开会...");
            try {
                //Boss等待
                countDownLatch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println("所有人都已经到齐了,开会吧...");
        }
    }

    //员工到达会议室
    static class EmpleoyeeThread  extends Thread{
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + ",到达会议室....");
            //员工到达会议室 count - 1
            countDownLatch.countDown();
        }
    }
    
    public static void main(String[] args){
        //Boss线程启动
        new BossThread().start();

        for(int i = 0 ; i < countDownLatch.getCount() ; i++){
            new EmpleoyeeThread().start();
        }
    }
}

运行结果:

CountDownLatch
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,847评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,208评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,587评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,942评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,332评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,587评论 1 218
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,853评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,568评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,273评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,542评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,033评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,373评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,031评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,073评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,830评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,628评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,537评论 2 269

推荐阅读更多精彩内容