(九)细说TCP重传

        TCP的主要任务是很简单:打包和发送数据。TCP与其他协议的不同之处在于使用滑动窗口来管理基本数据收发过程,同时确保数据流的有效及可靠传输,从而不致发送速率明显快于接收速率。本文将描述TCP是如何确保设备可靠、有效地进行传输的。首先阐述TCP检测丢失片段以及重传的基本方法,之后介绍TCP如何判断一个片段为丢失片段。

TCP片段重传计时器以及重传队列:

        检测丢失片段并对之重传的方法概念上是很简单的。每一次发送一个片段,就开启一个重传计时器。计时器有一个初始值并随时间递减。如果在片段接收到确认之前计时器超时,就重传片段。TCP使用了这一基本技术,但实现方式稍有不同。原因在于为了提高效率需要一次处理多个未被确认的片段,以保证每一个在恰当的时间重传。TCP按照以下特定顺序工作:

            放置于重传队列中,计时器开始包含数据的片段一经发送,片段的一份复制就放在名为重传队列的数据结构中,此时启动重传计时器。因此,在某些时间点,每一个片段都会放在队列里。队列按照重传计时器的剩余时间来排列,因此TCP软件可追踪那几个计时器在最短时间内超时。

            确认处理如果在计时器超时之前收到了确认信息,则该片段从重传队列中移除。

            重传超时如果在计时器超时之前没有收到确认信息,则发生重传超时,片段自动重传。当然,相比于原片段,对于重传片段并没有更多的保障机制。因此,重传之后该片段还是保留在重传队列里。重传计时器被重启,重新开始倒计时。如果重传之后没有收到确认,则片段会再次重传并重复这一过程。在某些情况下重传也会失败。我们不想要TCP永远重传下去,因此TCP只会重传一定数量的次数,并判断出现故障终止连接。

        但是我们怎样知道一个片段被完全确认呢?重传是基于片段的,而TCP确认信息是基于序列号累积的。每次当设备A发送片段给设备B,设备B查看该片段的确认号字段。所有低于该字段的序列号都已经被设备A接收了。因此,当片段中所发送的所有字节的序列号都比设备A到设备B的最后一个确认号小的时候,一个从设备B发到设备A的片段被认为是确认了。这是通过计算片段中最后一个序列号结合片段的数据字段来实现的。

        让我们以下图为例来说明一下确认和重传是怎样工作的。假设连接中的服务器发出了四个连续片段(号码从1开始)

        片段1序列号字段是1片段长度80。所以片段1中最后一个序列号是80。

        片段2序列号是81片段长度是120。片段2中最后一个序列号是200。

        片段3序列号是201片段长度是160。片段3中最后一个序列号是360。

        片段4序列号是361片段长度是140。片段3中最后一个序列号是500。

        这些片段是一个接一个发送的,而无需等待前一个发送得到确认。这是TCP滑动窗口的一个主要优势(细说TCP滑动窗口)。

        假设客户端接收到前两个传输,它会发回一条确认消息确认号为201。从而告知服务器前两个片段已经被客户端成功接收了,它们从重传队列中移除(并且服务器发送窗口右移200字节)。在接收到确认号361或更高的片段之前,片段3会保留在重传队列中;片段4需要确认号501或更高。

        现在,让我们进一步假设传输过程中片段3丢失了,但片段4被接收到了。客户端将片段4保存在接收buffer中,但是不需要确认,因为TCP是累积确认机制——确认片段4表示片段3也接收到了,但实际上并没有。因此,客户端需要等待片段3。实际上,服务器端片段3的重传计时器会超时,服务器之后重传片段3。之后客户端收到,然后发送片段3和4的确认信息给服务器。

        还有一个重要的问题,服务器将如何处理片段4呢?虽然客户端在等待片段3,服务器没有收到反馈,所以它并不知道片段3丢失了,同样它也不知道片段4发生了什么(以及接下来传输的数据)。很有可能客户端已经接收到了片段4但是不能确认,也有可能片段4也丢失了。一些实现中会选择仅仅重传片段3,也有些会把3和4都重传。

        最后一个问题是重传队列中所使用片段重传计时器的值。如果设置过低,会发生过量重传,如果设置过高,重传丢失片段会减弱性能。必须通过一个称为自适应重传的过程来动态调整这个值,接下来的章节会讲到。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,835评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,598评论 1 295
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,569评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,159评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,533评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,710评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,923评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,674评论 0 203
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,421评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,622评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,115评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,428评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,114评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,097评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,875评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,753评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,649评论 2 271

推荐阅读更多精彩内容

  • 个人认为,Goodboy1881先生的TCP /IP 协议详解学习博客系列博客是一部非常精彩的学习笔记,这虽然只是...
    贰零壹柒_fc10阅读 5,019评论 0 8
  • 1.这篇文章不是本人原创的,只是个人为了对这部分知识做一个整理和系统的输出而编辑成的,在此郑重地向本文所引用文章的...
    SOMCENT阅读 12,980评论 6 174
  • 21.1 引言 TCP提供可靠的运输层。它使用的方法之一就是确认从另一端收到的数据。但数据和确认都有可能会丢失。T...
    张芳涛阅读 2,890评论 0 8
  • 传输层-TCP, TCP头部结构 ,TCP序列号和确认号详解 TCP主要解决下面的三个问题 1.数据的可靠传输...
    抓兔子的猫阅读 4,397评论 1 46
  • 今天的动态静心比昨天更深入地临在,我在静心的第二个环节就哭了,昨天是到第四环节结束面向阳光叩拜才开始哭。今天我在第...
    誼君阅读 188评论 0 1