解决哈希冲突的常用方法分析

1.基本概念

哈希算法:根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上的算法。也称为散列算法、杂凑算法。
哈希表:数据经过哈希算法之后得到的集合。这样关键字和数据在集合中的位置存在一定的关系,可以根据这种关系快速查询。
非哈希表:与哈希表相对应,集合中的 数据和其存放位置没任何关联关系的集合。

由此可见,哈希算法是一种特殊的算法,能将任意数据散列后映射到有限的空间上,通常计算机软件中用作快速查找或加密使用。

哈希冲突:由于哈希算法被计算的数据是无限的,而计算后的结果范围有限,因此总会存在不同的数据经过计算后得到的值相同,这就是哈希冲突。

2.解决哈希冲突的方法

解决哈希冲突的方法一般有:开放定址法、链地址法(拉链法)、再哈希法、建立公共溢出区等方法。

2.1 开放定址法

从发生冲突的那个单元起,按照一定的次序,从哈希表中找到一个空闲的单元。然后把发生冲突的元素存入到该单元的一种方法。开放定址法需要的表长度要大于等于所需要存放的元素。
在开放定址法中解决冲突的方法有:线行探查法、平方探查法、双散列函数探查法。
开放定址法的缺点在于删除元素的时候不能真的删除,否则会引起查找错误,只能做一个特殊标记。只到有下个元素插入才能真正删除该元素。

2.1.1 线行探查法

线行探查法是开放定址法中最简单的冲突处理方法,它从发生冲突的单元起,依次判断下一个单元是否为空,当达到最后一个单元时,再从表首依次判断。直到碰到空闲的单元或者探查完全部单元为止。
可以参考csdn上flash对该方法的演示:
http://student.zjzk.cn/course_ware/data_structure/web/flash/cz/kfdzh.swf

2.1.2 平方探查法

平方探查法即是发生冲突时,用发生冲突的单元d[i], 加上 1²、 2²等。即d[i] + 1²,d[i] + 2², d[i] + 3²...直到找到空闲单元。
在实际操作中,平方探查法不能探查到全部剩余的单元。不过在实际应用中,能探查到一半单元也就可以了。若探查到一半单元仍找不到一个空闲单元,表明此散列表太满,应该重新建立。

2.1.3 双散列函数探查法

这种方法使用两个散列函数hl和h2。其中hl和前面的h一样,以关键字为自变量,产生一个0至m—l之间的数作为散列地址;h2也以关键字为自变量,产生一个l至m—1之间的、并和m互素的数(即m不能被该数整除)作为探查序列的地址增量(即步长),探查序列的步长值是固定值l;对于平方探查法,探查序列的步长值是探查次数i的两倍减l;对于双散列函数探查法,其探查序列的步长值是同一关键字的另一散列函数的值。

2.2 链地址法(拉链法)

链接地址法的思路是将哈希值相同的元素构成一个同义词的单链表,并将单链表的头指针存放在哈希表的第i个单元中,查找、插入和删除主要在同义词链表中进行。链表法适用于经常进行插入和删除的情况。
如下一组数字,(32、40、36、53、16、46、71、27、42、24、49、64)哈希表长度为13,哈希函数为H(key)=key%13,则链表法结果如下:

0       
1  -> 40 -> 27 -> 53 
2
3  -> 16 -> 42
4
5
6  -> 32 -> 71
7  -> 46
8
9
10 -> 36 -> 49
11 -> 24
12 -> 64

注:在java中,链接地址法也是HashMap解决哈希冲突的方法之一,jdk1.7完全采用单链表来存储同义词,jdk1.8则采用了一种混合模式,对于链表长度大于8的,会转换为红黑树存储。

2.3 再哈希法

就是同时构造多个不同的哈希函数:
Hi = RHi(key) i= 1,2,3 ... k;
当H1 = RH1(key) 发生冲突时,再用H2 = RH2(key) 进行计算,直到冲突不再产生,这种方法不易产生聚集,但是增加了计算时间。

2.4 建立公共溢出区

将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270

推荐阅读更多精彩内容