深度学习调参技巧 调参trick

|公|众|号|包包算法笔记|

背景

事情的起因其实这样,实验室老同学的论文要冲分,问我有没有啥在NN上,基本都有用的刷点方法,最好是就是短小精悍,代码量不大,不需要怎么调参。

一般通用的trick都被写进论文和代码库里了,

像优秀的优化器,学习率调度方法,数据增强,dropout,初始化,BN,LN,确实是调参大师的宝贵经验,大家平常用的也很多。

除了这些,天底下还有这样的好事?

确实有一些这样的方法的,他们通用,简单。根据我的经验,在大多数的数据上都有效。

一、对抗训练

第一个,对抗训练。

对抗训练就是在输入的层次增加扰动,根据扰动产生的样本,来做一次反向传播。

以FGM为例,在NLP上,扰动作用于embedding层。

给个即插即用代码片段吧,引用了知乎id:Nicolas的代码,写的不错,带着看原理很容易就明白了。

import torch
class FGM():
    def __init__(self, model):
        self.model = model
        self.backup = {}

    def attack(self, epsilon=1., emb_name='emb.'):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name:
                self.backup[name] = param.data.clone()
                norm = torch.norm(param.grad)
                if norm != 0 and not torch.isnan(norm):
                    r_at = epsilon * param.grad / norm
                    param.data.add_(r_at)

    def restore(self, emb_name='emb.'):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name: 
                assert name in self.backup
                param.data = self.backup[name]
        self.backup = {}

具体FGM的实现

# 初始化
fgm = FGM(model)
for batch_input, batch_label in data:
    # 正常训练
    loss = model(batch_input, batch_label)
    loss.backward() # 反向传播,得到正常的grad
    # 对抗训练
    fgm.attack() # 在embedding上添加对抗扰动
    loss_adv = model(batch_input, batch_label)
    loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
    fgm.restore() # 恢复embedding参数
    # 梯度下降,更新参数
    optimizer.step()
    model.zero_grad()

二、EMA

第二个,EMA(指数滑动平均)

移动平均,保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。这个东西,我之前在earhian的祖传代码里看到的。他喜欢这东西+衰减学习率。确实每次都有用。

代码引用博客:https://fyubang.com/2019/06/01/ema/

# 初始化
ema = EMA(model, 0.999)ema.register()# 训练过程中,更新完参数后,同步update shadow weightsdef train():    optimizer.step()    ema.update()# eval前,apply shadow weights;eval之后,恢复原来模型的参数def evaluate():    ema.apply_shadow()    # evaluate    ema.restore()

具体EMA实现,即插即用:

class EMA():
    def __init__(self, model, decay):
        self.model = model
        self.decay = decay
        self.shadow = {}
        self.backup = {}

    def register(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                self.shadow[name] = param.data.clone()

    def update(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
                self.shadow[name] = new_average.clone()

    def apply_shadow(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                self.backup[name] = param.data
                param.data = self.shadow[name]

    def restore(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.backup
                param.data = self.backup[name]
        self.backup = {}

# 初始化
ema = EMA(model, 0.999)
ema.register()

# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    ema.update()

# eval前,apply shadow weights;eval之后,恢复原来模型的参数
def evaluate():
    ema.apply_shadow()
    # evaluate
    ema.restore()

三、TTA

第三个,TTA。

这个一句话说明白,测试时候构造靠谱的数据增强,简单一点的数据增强方式比较好,然后把预测结果加起来算个平均。

这个实现实在是比较简单,就不贴代码了。

四、伪标签

第四个,伪标签学习。

这个也一句话说明白,就是用训练的模型,把测试数据,或者没有标签的数据,推断一遍。构成伪标签,然后拿回去训练。注意不要leak。

下面那个老图,比较形象。

image.gif

五、特定样本处理

第五个,特定样本处理。

说这个通用勉强一点,但确实在这类数据上基本都有效。

就是小样本,长尾样本,或者模型不太有把握的样本。把分类过程为根据特征检索的过程。

用向量表征去查找最近邻样本。

这块,有个ICLR2020的文章写的比较好,facebook的老哥把几种典型的方法整理了一下,具体可以参考:

https://arxiv.org/abs/1910.09217

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,716评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,558评论 1 294
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,431评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,127评论 0 209
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,511评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,692评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,915评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,664评论 0 202
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,412评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,616评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,105评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,424评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,098评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,096评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,869评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,748评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,641评论 2 271

推荐阅读更多精彩内容