TensorFlow中的Learning rate decay介绍

在模型训练DL模型时,随着模型的epoch迭代,往往会推荐逐渐减小learning rate,在一些实验中也证明确实对训练的收敛有正向效果。对于learning rate的改变,有定制衰减规则直接控制的,也有通过算法自动寻优的。这里主要介绍下TF自带的两种衰减方法:指数衰减和多项式衰减。

指数衰减(tf.train.exponential_decay)

方法原型:

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None){#exponential_decay}

参数:

learning_rate:初始值

global_step:全局step数(每个step对应一次batch)

decay_steps:learning rate更新的step周期,即每隔多少step更新一次learning rate的值

decay_rate:指数衰减参数(对应α^t中的α)

staircase:是否阶梯性更新learning rate,也就是global_step/decay_steps的结果是float型还是向下取整

计算公式:

decayed_learning_rate=learning_rate*decay_rate^(global_step/decay_steps)


多项式衰减(tf.train.polynomial_decay)

方法原型:

tf.train.polynomial_decay(learning_rate, global_step, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False, name=None){#polynomial_decay}

参数:

learning_rate:初始值

global_step:全局step数(每个step对应一次batch)

decay_steps:learning rate更新的step周期,即每隔多少step更新一次learning rate的值

end_learning_rate:衰减最终值

power:多项式衰减系数(对应(1-t)^α的α)

cycle:step超出decay_steps之后是否继续循环t

计算公式:

当cycle=False时

global_step=min(global_step, decay_steps)

decayed_learning_rate=

(learning_rate-end_learning_rate)*(1-global_step/decay_steps)^(power)+end_learning_rate

当cycle=True时

decay_steps=decay_steps*ceil(global_step/decay_steps)

decayed_learning_rate=

(learning_rate-end_learning_rate)*(1-global_step/decay_steps)^(power)+end_learning_rate

注:ceil是向上取整


更新lr的一般代码:

def _configure_learning_rate(num_samples_per_epoch, global_step):

"""Configures the learning rate.

Args:

num_samples_per_epoch: The number of samples in each epoch of training.

global_step: The global_step tensor.

Returns:

A `Tensor` representing the learning rate.

Raises:

ValueError: if

"""

decay_steps = int(num_samples_per_epoch / FLAGS.batch_size *

FLAGS.num_epochs_per_decay)

if FLAGS.sync_replicas:

decay_steps /= FLAGS.replicas_to_aggregate

if FLAGS.learning_rate_decay_type == 'exponential':

return tf.train.exponential_decay(FLAGS.learning_rate,

global_step,

decay_steps,

FLAGS.learning_rate_decay_factor,

staircase=True,

name='exponential_decay_learning_rate')

elif FLAGS.learning_rate_decay_type == 'fixed':

return tf.constant(FLAGS.learning_rate, name='fixed_learning_rate')

elif FLAGS.learning_rate_decay_type == 'polynomial':

return tf.train.polynomial_decay(FLAGS.learning_rate,

global_step,

decay_steps,

FLAGS.end_learning_rate,

power=1.0,

cycle=False,

name='polynomial_decay_learning_rate')

else:

raise ValueError('learning_rate_decay_type [%s] was not recognized',

FLAGS.learning_rate_decay_type)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 155,770评论 4 358
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,116评论 1 286
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 105,656评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,372评论 0 201
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 51,704评论 3 285
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,166评论 1 204
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,535评论 2 306
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,259评论 0 193
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 33,882评论 1 236
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,218评论 2 239
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,760评论 1 255
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,126评论 2 249
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,667评论 3 228
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 25,935评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,644评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,171评论 2 265
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,119评论 2 258

推荐阅读更多精彩内容

  • 如果你觉得这篇文章对你有帮助可随意转载,但请注明出处和作者。 我们在做报告,PPT,或者完成一些设计的时候总会插入...
    liliboy阅读 543评论 0 1
  • iOS中有几种线程锁:@synchronized、NSLock以及NSRecursiveLock(递归锁)。本文用...
    rapunzelyeah阅读 163评论 0 2
  • 本以为忘了就忘了,放下了就放下了,可为什么当在某个特定的环境中,再加上那个时候的音乐,此时若是想起了,竟也会牵一发...
    mj小鸽子阅读 215评论 0 0