一致性哈希算法之Ketama算法

原文

有关一致性哈希算法原理及其应用讨论的文章已经足够多,如果对一致性哈希算法一点概念都没有的同学可以先参考这篇文章:一致性哈希

相对来说,一致性哈希算法的原理还是比较容易理解的,但在日常开发过程中发现虽然大部分同事对一致性哈希算法的原理有个大概的认识,然而能知道该算法具体实现的人却寥寥无几。当然一致性哈希算法的实现不同语言有不同的实现方式,其中较为有名的一种实现叫Ketama算法,该算法最初是由Last.fm的程序员实现的并得到了广泛的应用,一些开源框架譬如spymemcached,twemproxy等都内置了该算法的实现。

本文主要从spymemcached的源码出发,分析Ketama算法的具体实现。

在类KetamaNodeLocator.java里有个setKetamaNodes()方法负责一致性哈希环的初始化工作, 代码如下:

    protected void setKetamaNodes(List<MemcachedNode> nodes) {
        TreeMap<Long, MemcachedNode> newNodeMap = new TreeMap<Long, MemcachedNode>();
        int numReps = config.getNodeRepetitions();

        for (MemcachedNode node : nodes) {
          // Ketama does some special work with md5 where it reuses chunks.
          if (hashAlg == DefaultHashAlgorithm.KETAMA_HASH) {
            for (int i = 0; i < numReps / 4; i++) {
              byte[] digest = DefaultHashAlgorithm.computeMd5(config.getKeyForNode(node, i));
              for (int h = 0; h < 4; h++) {
                Long k = ((long) (digest[3 + h * 4] & 0xFF) << 24)
                        | ((long) (digest[2 + h * 4] & 0xFF) << 16)
                        | ((long) (digest[1 + h * 4] & 0xFF) << 8)
                        | (digest[h * 4] & 0xFF);

                newNodeMap.put(k, node);
                getLogger().debug("Adding node %s in position %d", node, k);
              }
            }
          } else {
            for (int i = 0; i < numReps; i++) {
              newNodeMap.put(hashAlg.hash(config.getKeyForNode(node, i)), node);
            }
          }
        }
        assert newNodeMap.size() == numReps * nodes.size();
        ketamaNodes = newNodeMap;
    }

下面我们来具体分析下setKetamaNodes函数的实现,首先MemcachedNode这个类对Memcached节点的网络连接参数及方法进行了封装。TreeMap在这里用于模拟一致性哈希环的环状结构。

    int numReps = config.getNodeRepetitions();

getNodeRepetitions()方法负责读取配置信息,返回一个真实的Memcached节点对应的虚拟节点数,默认情况下返回160,也就是说一个Memcached节点在一致性哈希环上对应有160个虚拟节点。

    config.getKeyForNode(node, i)

getKeyForNode()根据传进去的MemcacheNode对象和变量i生成key值,返回值示例:“127.0.0.1:11311-0”

computeMd5()根据key生成16位的MD5摘要, 因此digest数组共16位:

    byte[] digest = DefaultHashAlgorithm.computeMd5(config.getKeyForNode(node, i));

将digest数组按每四位一组,通过位操作产生一个最大32位的长整数。之所以是32位是因为一致性哈希环取值范围为0~2^32; 回到上面的例子,对于一个Memcached节点譬如“127.0.0.1:11311”, 将通过for循环产生“127.0.0.1:11311-0”,“127.0.0.1:11311-1”... “127.0.0.1:11311-39”共40个副本,对于每个副本譬如“127.0.0.1:11311-0”, 将会产生4个长整数,对应一致性哈希环上的4个位置,所以默认配置的情况下,一个Memcached节点将在一致性哈希环上占据4×40=160个位置。

    Long k = ((long) (digest[3 + h * 4] & 0xFF) << 24)
            | ((long) (digest[2 + h * 4] & 0xFF) << 16)
            | ((long) (digest[1 + h * 4] & 0xFF) << 8)
            | (digest[h * 4] & 0xFF);

以k为key将MemcacheNode对象放到TreeMap里:

    newNodeMap.put(k, node);

由于TreeMap中的value是按Key排序的,因此可以通过TreeMap来模拟一致性哈希的环状结构,k值小的排在前,k值大的排在后。

以上就是一致性哈希环初始化过程的的基本分析,下面我们来看看查询的过程, getPrimary()函数传入一个key,譬如"123", 先计算出该key的哈希值。

    public MemcachedNode getPrimary(final String k) {
        MemcachedNode rv = getNodeForKey(hashAlg.hash(k));
        assert rv != null : "Found no node for key " + k;
        return rv;
      }


    MemcachedNode getNodeForKey(long hash) {
        final MemcachedNode rv;
        if (!ketamaNodes.containsKey(hash)) {
          // Java 1.6 adds a ceilingKey method, but I'm still stuck in 1.5
          // in a lot of places, so I'm doing this myself.
          SortedMap<Long, MemcachedNode> tailMap = getKetamaNodes().tailMap(hash);
          if (tailMap.isEmpty()) {
            hash = getKetamaNodes().firstKey();
          } else {
            hash = tailMap.firstKey();
          }
        }
        rv = getKetamaNodes().get(hash);
        return rv;
    }   

重点在于下面这句, TreeMap的tailMap()方法会返回一个SortedMap对象tailMap, tailMap中包含的所有key值都比传参hash大,这个操作相当于给定一个hash值,从一致性哈希环中按顺时针顺序查找节点,直到查找到第一个key值比传参hash大的节点,该节点就是该hash值所对应的Memcached节点。

    SortedMap<Long, MemcachedNode> tailMap = getKetamaNodes().tailMap(hash);

以上就是对Sypmencached源码中Ketama算法的实现分析。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270

推荐阅读更多精彩内容