RSA算法原理(二)

上一次,我介绍了一些数论知识

有了这些知识,我们就可以看懂RSA算法。这是目前地球上最重要的加密算法。

图片.png

六、密钥生成的步骤

我们通过一个例子,来理解RSA算法。假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢?

image

第一步,随机选择两个不相等的质数p和q。

爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

第二步,计算p和q的乘积n。

爱丽丝就把61和53相乘。

n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

第三步,计算n的欧拉函数φ(n)。

根据公式:

φ(n) = (p-1)(q-1)

爱丽丝算出φ(3233)等于60×52,即3120。

第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。

爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

第五步,计算e对于φ(n)的模反元素d。

所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。

ed ≡ 1 (mod φ(n))

这个式子等价于

ed - 1 = kφ(n)

于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。

ex + φ(n)y = 1

已知 e=17, φ(n)=3120,

17x + 3120y = 1

这个方程可以用"扩展欧几里得算法"求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。

至此所有计算完成。

第六步,将n和e封装成公钥,n和d封装成私钥。

在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。

七、RSA算法的可靠性

回顾上面的密钥生成步骤,一共出现六个数字:

p
  q
  n
  φ(n)
  e
  d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:

"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。

12301866845301177551304949
  58384962720772853569595334
  79219732245215172640050726
  36575187452021997864693899
  56474942774063845925192557
  32630345373154826850791702
  61221429134616704292143116
  02221240479274737794080665
  351419597459856902143413

它等于这样两个质数的乘积:

33478071698956898786044169
  84821269081770479498371376
  85689124313889828837938780
  02287614711652531743087737
  814467999489
    ×
  36746043666799590428244633
  79962795263227915816434308
  76426760322838157396665112
  79233373417143396810270092
  798736308917

事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。

八、加密和解密

有了公钥和密钥,就能进行加密和解密了。

(1)加密要用公钥 (n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。

所谓"加密",就是算出下式的c:

me ≡ c (mod n)

爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:

6517 ≡ 2790 (mod 3233)

于是,c等于2790,鲍勃就把2790发给了爱丽丝。

(2)解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:

cd ≡ m (mod n)

也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出

27902753 ≡ 65 (mod 3233)

因此,爱丽丝知道了鲍勃加密前的原文就是65。

至此,"加密--解密"的整个过程全部完成。

我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。

你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种"对称性加密算法"(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。

九、私钥解密的证明

最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:

cd ≡ m (mod n)

因为,根据加密规则

e ≡ c (mod n)

于是,c可以写成下面的形式:

c = me - kn

将c代入要我们要证明的那个解密规则:

(me - kn)d ≡ m (mod n)

它等同于求证

med ≡ m (mod n)

由于

ed ≡ 1 (mod φ(n))

所以

ed = hφ(n)+1

将ed代入:

mhφ(n)+1 ≡ m (mod n)

接下来,分成两种情况证明上面这个式子。

(1)m与n互质。

根据欧拉定理,此时

mφ(n) ≡ 1 (mod n)

得到

(mφ(n))h × m ≡ m (mod n)

原式得到证明。

(2)m与n不是互质关系。

此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。

以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:

(kp)q-1 ≡ 1 (mod q)

进一步得到

[(kp)q-1]h(p-1) × kp ≡ kp (mod q)

(kp)ed ≡ kp (mod q)

将它改写成下面的等式

(kp)ed = tq + kp

这时t必然能被p整除,即 t=t'p

(kp)ed = t'pq + kp

因为 m=kp,n=pq,所以

med ≡ m (mod n)

原式得到证明。

(完)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,716评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,558评论 1 294
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,431评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,127评论 0 209
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,511评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,692评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,915评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,664评论 0 202
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,412评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,616评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,105评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,424评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,098评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,096评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,869评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,748评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,641评论 2 271

推荐阅读更多精彩内容