RocketMQ的读取

参考

有思考的大佬博客
https://www.jianshu.com/p/f071d5069059

概述

PushConsumer的非顺序消息执行流程:

  • Consumer每20s重新做一次负载均衡更新,根据从Broker存储的ConsumerGroup和Topic信息,把MessageQueue分发给不同的Consumer,负载策略默认是分页
  • 每个MessageQueue对应一个pullRequest,全部存储到该Consumer的pullRequestQueue队列里面
  • Consumer启动独立后台PullMessageService线程,不停的尝试从pullRequestQueue.take()获取PullRequest
  • 捞取到PullRequest会先做缓存校验(默认一个Queue里面缓存待处理消息个数不超过1000个,消息大小不超过100M,否则会延迟50ms再重试),从而保证客户端的缓存负载不会过高
  • PullRequest发送给Broker,如果Broker发现该Queue有待处理的消息,就会直接返回给Consumer,Consumer接收响应以后,重新把该PullRequest丢到自己的pullRequestQueue队列里面,从而重复执行捞取消息的动作,保证消息的及时性
  • PullRequest发送给Broker,如果Broker发现该Queue没有待处理的消息,则会Hold住这个请求,暂不响应给Consumer,默认长轮询是5s重试获取一次待处理消息,如果有新的待处理消息则立刻Response给Consumer,当客户端检测到消息挂起超时(客户端有默认参数 响应超时时间 20s),会重新发起PullRequest给Broker
  1. 负载均衡放在Consumer端处理,而不是由Broker处理

  2. PushConsumer采用:长轮询+超时时间+Pull的模式

  • 可以保证Consumer的负载不会过高,因为Broker是不会主动去给Consumer推送消息,只有Consumer校验自己的缓存消息没有超过阈值才会去从Broker拉取消息
  • 可以保证消息的即时性,因为如果Broker持续有新的消息产生,Consumer不停的Pull,Broker不停的Response,重复执行
  • Broker端无效请求的次数大大降低:Broker如果当前没有待处理消息,会挂起PullRequest,而Consumer在未接收到Response且未超时时,是不会重新发起PullRequest的
  1. 长轮询的原理:
    https://www.jianshu.com/p/ac4ff1a8133b
  2. 消费者会不停的从PullRequest的队列里取request然后向broker请求消息,得到broker的响应后会做相应处理并把PullRequest放回队列以便下一次请求
  3. broker在查不到消息的情况下会hold住请求,在ReputMessageService不停构建ConsumeQueue的时候,会拿出hold住的请求进行二次处理

PullConsumer模式

特点:代码更繁琐,但是业务更自由,由代码控制pull的规则(间隔多长时间pull一次)。
但是一般RMQ的Push模式已经优化的很好了,所以PullConsumer模式在实际应用中用的较少。

    DefaultMQPullConsumer consumer = new DefaultMQPullConsumer("please_rename_unique_group_name_5");
    consumer.setNamesrvAddr("127.0.0.1:9876");
    consumer.setInstanceName("consumer");
    consumer.start();
    Set<MessageQueue> mqs = consumer.fetchSubscribeMessageQueues("TopicTest111");
    for (MessageQueue mq : mqs) {
        SINGLE_MQ:
        while (true) {
                PullResult pullResult =consumer.pullBlockIfNotFound(mq, null, getMessageQueueOffset(mq), 32);
                putMessageQueueOffset(mq, pullResult.getNextBeginOffset());
                switch (pullResult.getPullStatus()) {
                    case FOUND:
                        System.out.println(pullResult.getMsgFoundList().get(0).toString());
                        break;
                    case NO_NEW_MSG:
                        break SINGLE_MQ;
                    default:
                        break;
                }
        }
    }

PushConusmer模式:

结合了Push和Pull的特点,Rocketmq已经优化好了Pull的规则,用户只要编写回调接口即可。

    DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name");
    consumer.setNamesrvAddr("localhost:9876");
    consumer.subscribe("TopicTest", "*");
    consumer.registerMessageListener(new MessageListenerConcurrently() {
        @Override
        public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
            System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
            return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
        }
    });
    consumer.start();
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 160,504评论 4 365
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,898评论 1 300
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 110,218评论 0 248
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,322评论 0 214
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,693评论 3 290
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,812评论 1 223
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 32,010评论 2 315
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,747评论 0 204
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,476评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,700评论 2 251
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,190评论 1 262
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,541评论 3 258
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,206评论 3 240
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,129评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,903评论 0 199
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,894评论 2 283
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,748评论 2 274

推荐阅读更多精彩内容

  • 4. 设计思想 4.1 动机 我们设计的 Kafka 能够作为一个统一的平台来处理大公司可能拥有的所有实时数据馈送...
    疯狂的橙阅读 1,049评论 1 4
  • “ 消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列...
    落羽成霜丶阅读 3,933评论 1 41
  • 本文转载自http://dataunion.org/?p=9307 背景介绍Kafka简介Kafka是一种分布式的...
    Bottle丶Fish阅读 5,355评论 0 34
  • 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下: 以时间复杂度为O...
    高广超阅读 12,715评论 8 167
  • 大雨倾盆落凡尘,倚窗听得倦意生。 唯愿明日天作美,准点出勤不扣分。
    不夜侯_阅读 107评论 0 0