3.3RDD的转换和DAG的生成

3.3 RDD的转换和DAG的生成

Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG。接下来以“Word Count”为例,详细描述这个DAG生成的实现过程。

Spark Scala版本的Word Count程序如下:

1:val file = spark.textFile("hdfs://...")

2:val counts = file.flatMap(line => line.split(" "))

3:        .map(word => (word, 1))

4:        .reduceByKey(_ + _)

5:counts.saveAsTextFile("hdfs://...")

file和counts都是RDD,其中file是从HDFS上读取文件并创建了RDD,而counts是在file的基础上通过flatMap、map和reduceByKey这三个RDD转换生成的。最后,counts调用了动作saveAsTextFile,用户的计算逻辑就从这里开始提交的集群进行计算。那么上面这5行代码的具体实现是什么呢?

1)行1:spark是org.apache.spark.SparkContext的实例,它是用户程序和Spark的交互接口。spark会负责连接到集群管理者,并根据用户设置或者系统默认设置来申请计算资源,完成RDD的创建等。

spark.textFile("hdfs://...")就完成了一个org.apache.spark.rdd.HadoopRDD的创建,并且完成了一次RDD的转换:通过map转换到一个org.apache.spark.rdd.MapPartitions-RDD。也就是说,file实际上是一个MapPartitionsRDD,它保存了文件的所有行的数据内容。

2)行2:将file中的所有行的内容,以空格分隔为单词的列表,然后将这个按照行构成的单词列表合并为一个列表。最后,以每个单词为元素的列表被保存到MapPartitionsRDD。

3)行3:将第2步生成的MapPartitionsRDD再次经过map将每个单词word转为(word,1)的元组。这些元组最终被放到一个MapPartitionsRDD中。

4)行4:首先会生成一个MapPartitionsRDD,起到map端combiner的作用;然后会生成一个ShuffledRDD,它从上一个RDD的输出读取数据,作为reducer的开始;最后,还会生成一个MapPartitionsRDD,起到reducer端reduce的作用。

5)行5:首先会生成一个MapPartitionsRDD,这个RDD会通过调用org.apache. spark.rdd.PairRDDFunctions#saveAsHadoopDataset向HDFS输出RDD的数据内容。最后,调用org.apache.spark.SparkContext#runJob向集群提交这个计算任务。

RDD之间的关系可以从两个维度来理解:一个是RDD是从哪些RDD转换而来,也就是RDD的parent RDD(s)是什么;还有就是依赖于parent RDD(s)的哪些Partition(s)。这个关系,就是RDD之间的依赖,org.apache.spark.Dependency。根据依赖于parent RDD(s)的Partitions的不同情况,Spark将这种依赖分为两种,一种是宽依赖,一种是窄依赖。

3.3.1 RDD的依赖关系

RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

1)窄依赖指的是每一个parent RDD的Partition最多被子RDD的一个Partition使用,如图3-6所示。

[插图]

图3-6 RDD的窄依赖

2)宽依赖指的是多个子RDD的Partition会依赖同一个parent RDD的Partition,如图3-7所示。

[插图]

图3-7 RDD的宽依赖

接下来可以从不同类型的转换来进一步理解RDD的窄依赖和宽依赖的区别,如图3-8所示。

对于map和filter形式的转换来说,它们只是将Partition的数据根据转换的规则进行转化,并不涉及其他的处理,可以简单地认为只是将数据从一个形式转换到另一个形式。对于union,只是将多个RDD合并成一个,parent RDD的Partition(s)不会有任何的变化,可以认为只是把parent RDD的Partition(s)简单进行复制与合并。对于join,如果每个Partition仅仅和已知的、特定的Partition进行join,那么这个依赖关系也是窄依赖。对于这种有规则的数据的join,并不会引入昂贵的Shuffle。对于窄依赖,由于RDD每个Partition依赖固定数量的parent RDD(s)的Partition(s),因此可以通过一个计算任务来处理这些Partition,并且这些Partition相互独立,这些计算任务也就可以并行执行了。

[插图]

图3-8 RDD的窄依赖和宽依赖

对于groupByKey,子RDD的所有Partition(s)会依赖于parent RDD的所有Partition(s),子RDD的Partition是parent RDD的所有Partition Shuffle的结果,因此这两个R D D是不能通过一个计算任务来完成的。同样,对于需要parent RDD的所有Partition进行join的转换,也是需要Shuffle,这类join的依赖就是宽依赖而不是前面提到的窄依赖了。

所有的依赖都要实现trait Dependency[T]:

abstract class Dependency[T] extends Serializable {

def rdd: RDD[T]

}

其中rdd就是依赖的parent RDD。

对于窄依赖的实现是:

abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] {

//返回子RDD的partitionId依赖的所有的parent RDD的Partition(s)

def getParents(partitionId: Int): Seq[Int]

override def rdd: RDD[T] = _rdd

}

现在有两种窄依赖的具体实现,一种是一对一的依赖,即OneToOneDependency:

class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {

override def getParents(partitionId: Int) = List(partitionId)

}

通过getParents的实现不难看出,RDD仅仅依赖于parent RDD相同ID的Partition。

还有一个是范围的依赖,即RangeDependency,它仅仅被org.apache.spark.rdd. UnionRDD使用。UnionRDD是把多个RDD合成一个RDD,这些RDD是被拼接而成,即每个parent RDD的Partition的相对顺序不会变,只不过每个parent RDD在UnionRDD中的Partition的起始位置不同。因此它的getPartents如下:

override def getParents(partitionId: Int) = {

if(partitionId >= outStart && partitionId < outStart + length) {

List(partitionId - outStart + inStart)

} else {

Nil

}

}

其中,inStart是parent RDD中Partition的起始位置,outStart是在UnionRDD中的起始位置,length就是parent RDD中Partition的数量。

宽依赖的实现只有一种:ShuffleDependency。子RDD依赖于parent RDD的所有Partition,因此需要Shuffle过程:

class ShuffleDependency[K, V, C](

@transient _rdd: RDD[_ <: Product2[K, V]],

val partitioner: Partitioner,

val serializer: Option[Serializer] = None,

val keyOrdering: Option[Ordering[K]] = None,

val aggregator: Option[Aggregator[K, V, C]] = None,

val mapSideCombine: Boolean = false)

extends Dependency[Product2[K, V]] {


override def rdd = _rdd.asInstanceOf[RDD[Product2[K, V]]]

//获取新的shuffleId

val shuffleId: Int = _rdd.context.newShuffleId()

//向ShuffleManager注册Shuffle的信息

val shuffleHandle: ShuffleHandle =

_rdd.context.env.shuffleManager.registerShuffle(

shuffleId, _rdd.partitions.size, this)


_rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))

}

宽依赖支持两种Shuffle Manager,即org.apache.spark.shuffle.hash.HashShuffleManager(基于Hash的Shuffle机制)和org.apache.spark.shuffle.sort.SortShuffleManager(基于排序的Shuffle机制)。

3.3.2 DAG的生成

原始的RDD(s)通过一系列转换就形成了DAG。RDD之间的依赖关系,包含了RDD由哪些Parent RDD(s)转换而来和它依赖parent RDD(s)的哪些Partitions,是DAG的重要属性。借助这些依赖关系,DAG可以认为这些RDD之间形成了Lineage (血统)。借助Lineage,能保证一个RDD被计算前,它所依赖的parent RDD都已经完成了计算;同时也实现了RDD的容错性,即如果一个RDD的部分或者全部的计算结果丢失了,那么就需要重新计算这部分丢失的数据。

那么Spark是如何根据DAG来生成计算任务呢?首先,根据依赖关系的不同将DAG划分为不同的阶段(Stage)。对于窄依赖,由于Partition依赖关系的确定性,Partition的转换处理就可以在同一个线程里完成,窄依赖被Spark划分到同一个执行阶段;对于宽依赖,由于Shuffle的存在,只能在parent RDD(s)Shuffle处理完成后,才能开始接下来的计算,因此宽依赖就是Spark划分Stage的依据,即Spark根据宽依赖将DAG划分为不同的Stage。在一个Stage内部,每个Partition都会被分配一个计算任务(Task),这些Task是可以并行执行的。Stage之间根据依赖关系变成了一个大粒度的DAG,这个DAG的执行顺序也是从前向后的。也就是说,Stage只有在它没有parent Stage或者parent Stage都已经执行完成后,才可以执行。这个过程可以查询第4章。

3.3.3 Word Count的RDD转换和DAG划分的逻辑视图

上文分析了在Word Count的RDD转换时,Spark生成了不同的RDD。这些RDD有的和用户逻辑直接显式对应,比如map操作会生成一个org.apache.spark.rdd.Map-PartitionsRDD;而有的RDD则是和Spark的实现原理相关,是Spark隐式生成的,比如org.apache.spark.rdd.ShuffledRDD,这个过程对于用户来说是透明的,用户只需要关心RDD的转换和动作即可。

RDD在创建子RDD的时候,会通过Dependency来定义它们之间的关系。通过Dependency,子RDD也可以获得它的parent RDD和parent RDD的Partition。

RDD转换的细节如图3-9所示。

[插图]

图3-9“Word Count”的RDD转换

通过图3-9,可以清晰地看到Spark对于用户提交的Application所做的处理。用户定义的RDD被系统显式和隐式地转换成多个RDD以及这些RDD之间的依赖,这些依赖构建了这些RDD的处理顺序及相互关系。关于这些RDD的转换时如何在计算节点上运行的,请参阅第4章。

为了对图3-9有更加直观的理解,图3-10以一个有五个分片的输入文件为例,详细描述了“Word Count”的逻辑执行过程。之所以称为逻辑执行过程,是因为具体的计算过程可能会有网络的交互,有频繁地将处理中间数据写入磁盘等过程。

[插图]

图3-10“Word Count”RDD的逻辑转换关系图

需要强调的一点是在转换操作reduceByKey时会触发一个Shuffle(洗牌)的过程。在Shuffle开始之前,有一个本地聚合的过程,比如第三个分片的(e,1)(e,1)聚合成了(e,2)。Shuffle的结果是为下游的Task生成了三个分片,这三个分片就构成了ShuffledRDD。之后在做了一个聚合之后,就生成了结果的RDD。关于Shuffle的具体实现过程,可以参阅第7章。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270

推荐阅读更多精彩内容