常见排序算法 - 堆排序 (Heap Sort)

该排序动态演示网站
https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

图片来自维基百科

1. 不得不说说二叉树

要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树二叉堆

二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。

树和二叉树的三个主要差别:

  • 树的结点个数至少为 1,而二叉树的结点个数可以为 0
  • 树中结点的最大度数没有限制,而二叉树结点的最大度数为 2
  • 树的结点无左、右之分,而二叉树的结点有左、右之分

二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)

满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树

深度为 3 的满二叉树 full binary tree

完全二叉树:深度为 k,有 n 个节点的二叉树,当且仅当其每一个节点都与深度为 k 的满二叉树中序号为 1 至 n 的节点对应时,称之为完全二叉树

深度为 3 的完全二叉树 complete binary tree

2. 什么是堆?

堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。

如下图,是一个堆和数组的相互关系

堆和数组的相互关系

对于给定的某个结点的下标 i,可以很容易的计算出这个结点的父结点、孩子结点的下标:

  • Parent(i) = floor(i/2),i 的父节点下标
  • Left(i) = 2i,i 的左子节点下标
  • Right(i) = 2i + 1,i 的右子节点下标

二叉堆一般分为两种:最大堆和最小堆。

最大堆:

  • 最大堆中的最大元素值出现在根结点(堆顶)
  • 堆中每个父节点的元素值都大于等于其孩子结点(如果存在)
最大堆

最小堆:

  • 最小堆中的最小元素值出现在根结点(堆顶)
  • 堆中每个父节点的元素值都小于等于其孩子结点(如果存在)
最小堆

3. 堆排序原理

堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。在堆中定义以下几种操作:

  • 最大堆调整(Max-Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
  • 创建最大堆(Build-Max-Heap):将堆所有数据重新排序,使其成为最大堆
  • 堆排序(Heap-Sort):移除位在第一个数据的根节点,并做最大堆调整的递归运算

继续进行下面的讨论前,需要注意的一个问题是:数组都是 Zero-Based,这就意味着我们的堆数据结构模型要发生改变

Zero-Based

相应的,几个计算公式也要作出相应调整:

  • Parent(i) = floor((i-1)/2),i 的父节点下标
  • Left(i) = 2i + 1,i 的左子节点下标
  • Right(i) = 2(i + 1),i 的右子节点下标

最大堆调整(MAX‐HEAPIFY)的作用是保持最大堆的性质,是创建最大堆的核心子程序,作用过程如图所示:

Max-Heapify

由于一次调整后,堆仍然违反堆性质,所以需要递归的测试,使得整个堆都满足堆性质,用 JavaScript 可以表示如下:

/**
 * 从 index 开始检查并保持最大堆性质
 *
 * @array
 *
 * @index 检查的起始下标
 *
 * @heapSize 堆大小
 *
 **/
function maxHeapify(array, index, heapSize) {
  var iMax = index,
      iLeft = 2 * index + 1,
      iRight = 2 * (index + 1);
  if (iLeft < heapSize && array[index] < array[iLeft]) {
    iMax = iLeft;
  }
  if (iRight < heapSize && array[iMax] < array[iRight]) {
    iMax = iRight;
  }
  if (iMax != index) {
    swap(array, iMax, index);
    maxHeapify(array, iMax, heapSize); // 递归调整
  }
}
function swap(array, i, j) {
  var temp = array[i];
  array[i] = array[j];
  array[j] = temp;
}

通常来说,递归主要用在分治法中,而这里并不需要分治。而且递归调用需要压栈/清栈,和迭代相比,性能上有略微的劣势。当然,按照20/80法则,这是可以忽略的。但是如果你觉得用递归会让自己心里过不去的话,也可以用迭代,比如下面这样:

/**
 * 从 index 开始检查并保持最大堆性质
 *
 * @array
 *
 * @index 检查的起始下标
 *
 * @heapSize 堆大小
 *
 **/
function maxHeapify(array, index, heapSize) {
  var iMax, iLeft, iRight;
  while (true) {
    iMax = index;
    iLeft = 2 * index + 1;
    iRight = 2 * (index + 1);
    if (iLeft < heapSize && array[index] < array[iLeft]) {
      iMax = iLeft;
    }
    if (iRight < heapSize && array[iMax] < array[iRight]) {
      iMax = iRight;
    }
    if (iMax != index) {
      swap(array, iMax, index);
      index = iMax;
    } else {
      break;
    }
  }
}
function swap(array, i, j) {
  var temp = array[i];
  array[i] = array[j];
  array[j] = temp;
}

创建最大堆

创建最大堆(Build-Max-Heap)的作用是将一个数组改造成一个最大堆,接受数组和堆大小两个参数,Build-Max-Heap 将自下而上的调用 Max-Heapify 来改造数组,建立最大堆。因为 Max-Heapify 能够保证下标 i 的结点之后结点都满足最大堆的性质,所以自下而上的调用 Max-Heapify 能够在改造过程中保持这一性质。如果最大堆的数量元素是 n,那么 Build-Max-Heap 从 Parent(n) 开始,往上依次调用 Max-Heapify。流程如下:


Build-Max-Heap
用 JavaScript 描述如下:
function buildMaxHeap(array, heapSize) {
  var i,
      iParent = Math.floor((heapSize - 1) / 2);
      
  for (i = iParent; i >= 0; i--) {
    maxHeapify(array, i, heapSize);
  }
}

堆排序

堆排序(Heap-Sort)是堆排序的接口算法,Heap-Sort先调用Build-Max-Heap将数组改造为最大堆,然后将堆顶和堆底元素交换,之后将底部上升,最后重新调用Max-Heapify保持最大堆性质。由于堆顶元素必然是堆中最大的元素,所以一次操作之后,堆中存在的最大元素被分离出堆,重复n-1次之后,数组排列完毕。整个流程如下:


Heap-Sort
用 JavaScript 描述如下:
function heapSort(array, heapSize) {
  buildMaxHeap(array, heapSize);
  for (int i = heapSize - 1; i > 0; i--) {
    swap(array, 0, i);
    maxHeapify(array, 0, i);
  }  
}
JavaScript 语言实现

最后,把上面的整理为完整的 javascript 代码如下:

function heapSort(array) {
  function swap(array, i, j) {
    var temp = array[i];
    array[i] = array[j];
    array[j] = temp;
  }
  function maxHeapify(array, index, heapSize) {
    var iMax,
      iLeft,
      iRight;
    while (true) {
      iMax = index;
      iLeft = 2 * index + 1;
      iRight = 2 * (index + 1);
      if (iLeft < heapSize && array[index] < array[iLeft]) {
        iMax = iLeft;
      }
      if (iRight < heapSize && array[iMax] < array[iRight]) {
        iMax = iRight;
      }
      if (iMax != index) {
        swap(array, iMax, index);
        index = iMax;
      } else {
        break;
      }
    }
  }
  function buildMaxHeap(array) {
    var i,
      iParent = Math.floor(array.length / 2) - 1;
    for (i = iParent; i >= 0; i--) {
      maxHeapify(array, i, array.length);
    }
  }
  function sort(array) {
    buildMaxHeap(array);
    for (var i = array.length - 1; i > 0; i--) {
      swap(array, 0, i);
      maxHeapify(array, 0, i);
    }
    return array;
  }
  return sort(array);
}

转载自 http://bubkoo.com/2014/01/14/sort-algorithm/heap-sort/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,847评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,208评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,587评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,942评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,332评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,587评论 1 218
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,853评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,568评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,273评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,542评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,033评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,373评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,031评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,073评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,830评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,628评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,537评论 2 269