iOS包签名原理

目的

先来看看苹果的签名机制是为了做什么。在 iOS 出来之前,在主流操作系统(Mac/Windows/Linux)上开发和运行软件是不需要签名的,软件随便从哪里下载都能运行,导致平台对第三方软件难以控制,盗版流行。苹果希望解决这样的问题,在 iOS 平台对第三方 APP 有绝对的控制权,一定要保证每一个安装到 iOS 上的 APP 都是经过苹果官方允许的,怎样保证呢?就是通过签名机制。

非对称加密

通常我们说的签名就是数字签名,它是基于非对称加密算法实现的。对称加密是通过同一份密钥加密和解密数据,而非对称加密则有两份密钥,分别是公钥和私钥,用公钥加密的数据,要用私钥才能解密,用私钥加密的数据,要用公钥才能解密。

简单说一下常用的非对称加密算法 RSA 的数学原理,理解简单的数学原理,就可以理解非对称加密是怎么做到的,为什么会是安全的:

选两个质数p和q,相乘得出一个大整数n,例如 p=61,q=53,n=pq=3233

选 1-n 间的随便一个质数e,例如 e = 17

经过一系列数学公式,算出一个数字d,满足:

a. 通过n和e这两个数据一组数据进行数学运算后,可以通过 n 和 d 去反解运算,反过来也可以。

b. 如果只知道n和e,要推导出d,需要知道p和q,也就是要需要把 n 因数分解。

上述的(n,e)这两个数据在一起就是公钥,(n,d)这两个数据就是私钥,满足用公钥加密,私钥解密,或反过来公钥加密,私钥解密,也满足在只暴露公钥(只知道n和 e)的情况下,要推导出私钥(n,d),需要把大整数n因数分解。目前因数分解只能靠暴力穷举,而n数字越大,越难以用穷举计算出因数p和q,也就越安全,当n大到二进制 1024 位或 2048 位时,以目前技术要破解几乎不可能,所以非常安全。

若对数字d是怎样计算出来的感兴趣,可以详读这两篇文章:RSA 算法原理(一)
(二)

数字签名

现在知道了有非对称加密这东西,那数字签名是怎么回事呢?

数字签名的作用是我对某一份数据打个标记,表示我认可了这份数据(签了个名),然后我发送给其他人,其他人可以知道这份数据是经过我认证的,数据没有被篡改过。

有了上述非对称加密算法,就可以实现这个需求:
image

1.首先用一种算法,算出原始数据的摘要。需满足 a.若原始数据有任何变化,计算出来的摘要值都会变化。 b.摘要要够短。这里最常用的算法是MD5。

2.生成一份非对称加密的公钥和私钥,私钥我自己拿着,公钥公布出去。

3.对一份数据,算出摘要后,用私钥加密这个摘要,得到一份加密后的数据,称为原始数据的签名。把它跟原始数据一起发送给用户。

4.用户收到数据和签名后,用公钥解密得到摘要。同时用户用同样的算法计算原始数据的摘要,对比这里计算出来的摘要和用公钥解密签名得到的摘要是否相等,若相等则表示这份数据中途没有被篡改过,因为如果篡改过,摘要会变化。

之所以要有第一步计算摘要,是因为非对称加密的原理限制可加密的内容不能太大(不能大于上述 n 的位数,也就是一般不能大于 1024 位/ 2048 位),于是若要对任意大的数据签名,就需要改成对它的特征值签名,效果是一样的。

好了,有了非对称加密的基础,知道了数字签名是什么,怎样可以保证一份数据是经过某个地方认证的,来看看怎样通过数字签名的机制保证每一个安装到 iOS 上的 APP 都是经过苹果认证允许的。

最简单的签名

要实现这个需求很简单,最直接的方式,苹果官方生成一对公私钥,在 iOS 里内置一个公钥,私钥由苹果后台保存,我们传 App 上 AppStore 时,苹果后台用私钥对 APP 数据进行签名,iOS 系统下载这个 APP 后,用公钥验证这个签名,若签名正确,这个 APP 肯定是由苹果后台认证的,并且没有被修改过,也就达到了苹果的需求:保证安装的每一个 APP 都是经过苹果官方允许的。
image

如果我们 iOS 设备安装 APP 只有从 AppStore 下载这一种方式的话,这件事就结束了,没有任何复杂的东西,只有一个数字签名,非常简单地解决问题。

但实际上因为除了从 AppStore 下载,我们还可以有三种方式安装一个 App:

1.开发 App 时可以直接把开发中的应用安装进手机进行调试。

2.In-House 企业内部分发,可以直接安装企业证书签名后的 APP。

3.AD-Hoc 相当于企业分发的限制版,限制安装设备数量,较少用。

苹果要对用这三种方式安装的 App 进行控制,就有了新的需求,无法像上面这样简单了。

新的需求

我们先来看第一个,开发时安装APP,它有两个个需求:

1.安装包不需要传到苹果服务器,可以直接安装到手机上。如果你编译一个 APP 到手机前要先传到苹果服务器签名,这显然是不能接受的。

2.苹果必须对这里的安装有控制权,包括

a.经过苹果允许才可以这样安装。

b.不能被滥用导致非开发app也能被安装。

为了实现这些需求,iOS 签名的复杂度也就开始增加了。

苹果这里给出的方案是使用了双层签名,会比较绕,流程大概是这样的:

image

1.在你的 Mac 开发机器生成一对公私钥,这里称为公钥L,私钥L。L:Local

2.苹果自己有固定的一对公私钥,跟上面 AppStore 例子一样,私钥在苹果后台,公钥在每个 iOS 设备上。这里称为公钥A,私钥A。A:Apple

3.把公钥 L 传到苹果后台,用苹果后台里的私钥 A 去签名公钥 L。得到一份数据包含了公钥 L 以及其签名,把这份数据称为证书。

4.在开发时,编译完一个 APP 后,用本地的私钥 L 对这个 APP 进行签名,同时把第三步得到的证书一起打包进 APP 里,安装到手机上。

5.在安装时,iOS 系统取得证书,通过系统内置的公钥 A,去验证证书的数字签名是否正确。

6.验证证书后确保了公钥 L 是苹果认证过的,再用公钥 L 去验证 APP 的签名,这里就间接验证了这个 APP 安装行为是否经过苹果官方允许。(这里只验证安装行为,不验证APP 是否被改动,因为开发阶段 APP 内容总是不断变化的,苹果不需要管。)

加点东西

上述流程只解决了上面第一个需求,也就是需要经过苹果允许才可以安装,还未解决第二个避免被滥用的问题。怎么解决呢?苹果再加了两个限制,一是限制在苹果后台注册过的设备才可以安装,二是限制签名只能针对某一个具体的 APP。
image

可以想到把 允许安装的设备 ID 列表 和 App对应的 AppID 等数据,都在第三步这里跟公钥L一起组成证书,再用苹果私钥 A 对这个证书签名。在最后第 5 步验证时就可以拿到设备 ID 列表,判断当前设备是否符合要求。根据数字签名的原理,只要数字签名通过验证,第 5 步这里的设备 IDs / AppID / 公钥 L 就都是经过苹果认证的,无法被修改,苹果就可以限制可安装的设备和 APP,避免滥用。

最终流程

到这里这个证书已经变得很复杂了,有很多额外信息,实际上除了 设备 ID / AppID,还有其他信息也需要在这里用苹果签名,像这个 APP 里 iCloud / push / 后台运行 等权限苹果都想控制,苹果把这些权限开关统一称为 Entitlements,它也需要通过签名去授权。

image

因为步骤有小变动,这里我们不辞啰嗦重新再列一遍整个流程:

1.在你的 Mac 开发机器生成一对公私钥,这里称为公钥L,私钥L。L:Local

2.苹果自己有固定的一对公私钥,跟上面 AppStore 例子一样,私钥在苹果后台,公钥在每个 iOS 设备上。这里称为公钥A,私钥A。A:Apple

3.把公钥 L 传到苹果后台,用苹果后台里的私钥 A 去签名公钥 L。得到一份数据包含了公钥 L 以及其签名,把这份数据称为证书。

4.在苹果后台申请 AppID,配置好设备 ID 列表和 APP 可使用的权限,再加上第③步的证书,组成的数据用私钥 A 签名,把数据和签名一起组成一个 Provisioning Profile 文件,下载到本地 Mac 开发机。

5.在开发时,编译完一个 APP 后,用本地的私钥 L 对这个 APP 进行签名,同时把第④步得到的 Provisioning Profile 文件打包进 APP 里,文件名为embedded.mobileprovision,把 APP 安装到手机上。

6.在安装时,iOS 系统取得证书,通过系统内置的公钥 A,去验证embedded.mobileprovision的数字签名是否正确,里面的证书签名也会再验一遍。

7.确保了embedded.mobileprovision里的数据都是苹果授权以后,就可以取出里面的数据,做各种验证,包括用公钥 L 验证APP签名,验证设备 ID 是否在 ID 列表上,AppID 是否对应得上,权限开关是否跟 APP 里的 Entitlements 对应等。

开发者证书从签名到认证最终苹果采用的流程大致是这样,还有一些细节像证书有效期/证书类型等就不细说了。

概念和操作

上面的步骤对应到我们平常具体的操作和概念是这样的:

1.第 1 步对应的是 keychain 里的 “从证书颁发机构请求证书”,这里就本地生成了一堆公私钥,保存的CertificateSigningRequest就是公钥,私钥保存在本地电脑里。

2.第 2 步苹果处理,不用管。

3.第 3 步对应把CertificateSigningRequest传到苹果后台生成证书,并下载到本地。这时本地有两个证书,一个是第 1 步生成的,一个是这里下载回来的,keychain 会把这两个证书关联起来,因为他们公私钥是对应的,在XCode选择下载回来的证书时,实际上会找到 keychain 里对应的私钥去签名。这里私钥只有生成它的这台 Mac 有,如果别的 Mac 也要编译签名这个 App 怎么办?答案是把私钥导出给其他 Mac 用,在 keychain 里导出私钥,就会存成.p12文件,其他 Mac 打开后就导入了这个私钥。

4.第 4 步都是在苹果网站上操作,配置 AppID / 权限 / 设备等,最后下载 Provisioning Profile 文件。

5.第 5 步 XCode 会通过第 3 步下载回来的证书(存着公钥),在本地找到对应的私钥(第一步生成的),用本地私钥去签名 App,并把 Provisioning Profile 文件命名为embedded.mobileprovision一起打包进去。这里对 App 的签名数据保存分两部分,Mach-O 可执行文件会把签名直接写入这个文件里,其他资源文件则会保存在_CodeSignature目录下。

第 6 - 7 步的打包和验证都是 Xcode 和 iOS 系统自动做的事。

这里再总结一下这些概念:

1.证书:内容是公钥或私钥,由其他机构对其签名组成的数据包。

2.Entitlements:包含了 App 权限开关列表。

3.CertificateSigningRequest:本地公钥。

4. p12:本地私钥,可以导入到其他电脑。

5.Provisioning Profile:包含了 证书 / Entitlements 等数据,并由苹果后台私钥签名的数据包。

其他发布方式

前面以开发包为例子说了签名和验证的流程,另外两种方式 In-House 企业签名和 AD-Hoc 流程也是差不多的,只是企业签名不限制安装的设备数,另外需要用户在 iOS 系统设置上手动点击信任这个企业才能通过验证。

而 AppStore 的签名验证方式有些不一样,前面我们说到最简单的签名方式,苹果在后台直接用私钥签名 App 就可以了,实际上苹果确实是这样做的,如果去下载一个 AppStore 的安装包,会发现它里面是没有embedded.mobileprovision文件的,也就是它安装和启动的流程是不依赖这个文件,验证流程也就跟上述几种类型不一样了。

据猜测,因为上传到 AppStore 的包苹果会重新对内容加密,原来的本地私钥签名就没有用了,需要重新签名,从 AppStore 下载的包苹果也并不打算控制它的有效期,不需要内置一个embedded.mobileprovision去做校验,直接在苹果用后台的私钥重新签名,iOS 安装时用本地公钥验证 App 签名就可以了。

那为什么发布 AppStore 的包还是要跟开发版一样搞各种证书和 Provisioning Profile?猜测因为苹果想做统一管理,Provisioning Profile 里包含一些权限控制,AppID 的检验等,苹果不想在上传 AppStore 包时重新用另一种协议做一遍这些验证,就不如统一把这部分放在 Provisioning Profile 里,上传 AppStore 时只要用同样的流程验证这个 Provisioning Profile 是否合法就可以了。

所以 App 上传到 AppStore 后,就跟你的 证书 / Provisioning Profile 都没有关系了,无论他们是否过期或被废除,都不会影响 AppStore 上的安装包。

到这里 iOS 签名机制的原理和主流程大致说完了,希望能对理解苹果签名和排查日常签名问题有所帮助。

本文系转载,鸣谢作者

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,716评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,558评论 1 294
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,431评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,127评论 0 209
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,511评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,692评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,915评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,664评论 0 202
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,412评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,616评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,105评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,424评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,098评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,096评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,869评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,748评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,641评论 2 271

推荐阅读更多精彩内容