动态规划算法详解

动态规划的介绍

动态规划一般也只能应用于有最优子结构的问题。最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。简单地说,问题能够分解成子问题来解决。

基本思想及其与分治法的区别:

将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解(这部分与分治法相似)。与分治法不同的是,适合于用动态规划求解的问题,经分解得到的子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。通常可以用一个表来记录所有已解的子问题的答案。

不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划的基本思路。

动态规划算法的4个步骤:

1.描述最优解的结构

2.递归定义最优解的值

3.按自底向上的方式计算最优解的值 //此3步构成动态规划解的基础。

4.由计算出的结果构造一个最优解。 //此步如果只要求计算最优解的值时,可省略。

采用动态规划求解的问题需要具有两个特性:

最优子结构(Optimal Substructure):

问题的一个最优解中所包含的子问题的解也是最优的。总问题包含很多个子问题,而这些子问题的解也是最优的。

重叠子问题(Overlapping Subproblems):

用递归算法对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

典型例题:

有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?

分析

:很显然,这道题的对应的数学表达式是

F(n)=F(n-1) + F(n-2);

其中F(1)=1, F(2)=2。很自然的状况是,采用递归函数来求解:

int  solution(int n){  
    if(n>0 && n<2) return n;  
    return solution(n-1) + solution(n-2);  
}  
如果我们计算F(10), 先需要计算F(9) F(8); 但是我们计算F(9)的时候,又需要计算F(8),很明显,F(8)被计算了多次,存在重复计算;同理F(3)被重复计算的次数就更多了。算法分析与设计的核心在于 根据题目特点,减少重复计算。  在不改变算法结构的情况下,我们可以做如下改进:
int dp[11];  
int  solution(int n){  
    if(n>0 && n<2) return n;  
    if(dp[n]!=0) return dp[n];  
    dp[n] = solution(n-1) + solution(n-2);  
    return  dp[n];  
}  

这是一种递归形似的写法,进一步,我们可以将递归去掉:

int  solution(int n){  
    int dp[n+1];  
    dp[1]=1;dp[2]=2;  
    for (i = 3; i <= n; ++i){  
        dp[n] = dp[n-1] + dp[n-2];  
    }  
    return  dp[n];  
}  

动态规划的五个典型算法(见我其他的博客)

1.最大连续子序列之和

2.数塔问题(二叉树从上往下遍历最大和问题)

3.01背包问题

4.最长递增子序列(LIS)

5.最长公共子序列(LCS)

参考:
http://blog.csdn.net/zmazon/article/details/8247015
http://blog.csdn.net/lisonglisonglisong/article/details/41548557
http://blog.csdn.net/v_JULY_v/article/details/6110269
http://blog.csdn.net/trochiluses/article/details/37966729

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270

推荐阅读更多精彩内容