USB Type-C Configuration Channel (CC)引脚功能介绍

翻译自: http://kevinzhengwork.blogspot.com/2014/09/usb-type-c-configuration-channel-cc-pin.html

1.插入检测

DFP(下行端口)为主机端口,UFP(上行端口)为设备端口。如图所示,在DFP中的CC通道上有上拉电阻,相应的在UFP中有对应的下拉电阻。在DFP与UFP连接之前,VBUS没有输出,当两者连接之后,DFP检测到CC引脚的电平被拉低,DFP则识别到UFP设备已连接并打开VBUS上的MOSFET,为UFP设备供电。

在DFP上有两个CC引脚,DFP通过检测三种不同形式的UFP端下拉电阻(Open开路、Ra=0.8-1.2K、Rd=5.1K)来识别各种配置模式。

2.识别电缆方向来建立信号路由

连接Type-C电缆可以不区分正反方向,当DFP检测到CC1被下拉,则UFP是向上接入,同样地当检测到CC2被下拉则UFP是向下接入(参考上表)。下图展示了使用高速MUX进行信号路径切换。USB3.1数据速率高达10 Gbps,需要使用MUX来避免传输线分叉和冗余。

3.在两个端口间协商建立DFP和UFP身份

Type-C除了DFP与UFP,还有一种是DRP(双模式端口),可以在DFP与UFP间切换,当DRP端口与DFP设备相连,DRP则切换为UFP设备;同样地也可以切换为DFP设备。当两个DRP设备连接时,DFP与UFP身份是随机的。

4.了解VBUS配置方式:电流模式与USB PD

下表展示了每个USB标准所能提供的供电能力。纯Type-C端口可以提供5V/3A的供电能力。如果使用Type-C端口配合USB PD协议,供电能力则高达20V/5A。USB PD协议通过CC通道传输。

Type-C有 1.5A 和 3A 两种电流模式,取决于DFP的输出能力。DFP通过CC引脚上的电压告知UFP供电能力。UFP端的下拉电阻Rd=5.1K,DFP就可以通过其上拉电阻或者电流源在CC引脚上产生电压。

Type-C给出了不同输出模式下上拉电阻或电流源的规格:

举例来说,当DFP给CC引脚提供330uA的电流时,CC引脚上电压则为330uA * 5.1kOhms = 1.683V。根据下表,DFP则被识别为vRd-3.0标准。当DFP用10k电阻把CC引脚上拉至4.75~5.5V时,CC引脚上的电压则为1.688V,DFP也会被识别为vRd-3.0标准。

BMC PD控制器通过CC引脚发送USB PD协议。

5.配置VCONN

Type-C规范定义了内部有电路需要供电的主动电缆。Type-C电缆上一共有两个CC引脚,如果其中一个用来识别DFP与UFP,那么另外一个就可以用来作为VCONN为主动电缆提供电源。当DFP检测到下拉电阻为Ra=800~1200Ohms时,这个CC引脚将切换至VCONN对外输出4.75~5.5V,功率最大1W。

6.配置使用其他外设模式

Type-C规范定义了替代(Alt)模式与外设(Accessory)模式。主机、设备与线缆可以发送格式化的厂商自定义信息(VDM)来交换信息和发现USB ID。当主机通过VDM与设备交换信息厚进入 Alt 模式后,Type-C接口中的引脚定义将会改变以支持PCIe或者DisplayPort。下面的例子是一个Type-C扩展坞,它使用MUX切换PCIe或USB 3.1信号通至Type-C端口。

当CC1和CC2引脚同时使用Ra下拉时,主机将把设备识别成音频设备,然后从USB信号切换至音频信号。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270