十分钟快速理解DPI和PPI,不再傻傻分不清!

72DPI的图片拿去打印会糊吗?

手机拍出来的照片是多少DPI?

PS里显示72PPI为什么另存为JPG就变成96DPI了?

类似的问题层出不穷。本站很多篇文章都讲到了DPI和PPI的问题,但似乎还是不能很好地解释。这里我们以“一次性将这个问题说清楚”为目的,来好好聊聊DPI和PPI。

概念问题

不论是DPI还是PPI,实际都是一种换算的概念,即将图片承载的信息换算为现实中的图片(即人眼能实际看到的图像)。DPI和PPI的区别在于换算的途径不同,DPI面向的是印刷受体,而PPI面向的是荧幕。

1.PPI

PPI是英文Pixels Per Inch的缩写,意为像素每英寸。英寸是常用的长度单位,大约相当于2.54厘米。而像素是专用于荧幕的概念,指的是荧幕可以解析的最小的点。因此,PPI值得是像素在荧幕上的密度,PPI越高图像就越清晰。

举例来说,如果电脑屏幕是2K分辨率,即1920×1080像素,它的图像宽为1920像素。而如果这个电脑屏幕的物理宽度是19.2英寸,电脑屏幕是分辨率就是1920/19.2=100PPI。

2.DPI

DPI是英文Dots Per Inch的缩写,意为点每英寸。应粗你还是那个英寸,但是点的意义有很多。一般来讲,你可以把Dot理解为取样点,即物理设备可以解析的最小单位。在印刷时,它就可以作为印刷网点,而在鼠标等电子设备上,可以理解为最小操作阈值(即设备会把多么远的两个点当作一个点来处理)。

我们仍然拿1920×1080像素的图片来举例子,如果印刷设备的解析能力刚好是100DPI,而且你要印制的纸张尺寸刚好是19.2英寸,那么印刷设备就可以刚好把一个像素作为一个取样点,印刷完成后图片的保真度是百分之百(也就是图片所有的视觉信息都被印刷出来了)。在大多数情况下,这几个数值都不那么整好,因此保真度会产生损失。

作用原理

正如前文所说,DPI和PPI是链接图片信息和视觉的窗口,那么它们是如何产生作用的呢?

1.图片内置的DPI和PPI

图片在计算机(或其他设备)里是一系列代表视觉信息的数据,它的单位是像素。因此,真正能定义图片尺寸的是分辨率,比如前面提到的1920×1080像素。

而很多格式的图片会内置DPI或PPI这个属性,它的唯一作用是作为图形处理软件的参考值。比如,一张图片的PPI是300,那么置入Illustrator的时候就会直接是300PPI下的尺寸。DPI是完全相同的道理。换言之,不论图片的DPI和PPI如何变化,如果分辨率不变,那么图片承载的信息量就不会变化,在实际意义上图片的“大小”都是相同的。

2.设备的DPI和PPI

我们之前提到了印刷设备的解析能力这个问题。其实每个荧幕和每个印刷设备都有自己PPI或DPI参数。我们拿荧幕来说,荧幕的PPI就决定了荧幕的解析能力(注意,并非最大解析能力,而是绝对解析能力)。

如你把某个图片的尺寸在屏幕上放大缩小,它的物理尺寸在改变,因此对信息量来说PPI也在改变。然而,荧幕会按照它自己的PPI显示能力来重新解析这张图片,最终形成你肉眼看到的结果。这个过程,我们可以称为“栅格处理。”

3.栅格处理时使用的DPI和PPI

栅格处理,实际就是将图片在物理尺寸不变的情况下,对DPI或PPI进行调整,图片的信息量会受到影响。图像为何需要进行栅格处理?因为任何设备都有固定的解析能力,比如很多荧幕的解析能力是72PPI,这时一张全屏后(即在屏幕的物理尺寸下)从信息量上来说有300PPI的图片显然超过了荧幕的解析能力,因此对荧幕来说这么大的图片是没必要的,把图片在荧幕的物理尺寸下处理为72PPI就刚好了。

从上面的例子中,你也可以看出,栅格处理无处不在。你在解析能力为72PPI的电脑荧幕上查看一张图片时,不论你如何放大缩小图片,肉眼看到的都是72PPI的图像。即便图片可能被放大到模糊,你看到的仍是72PPI,因为电脑荧幕会将任何图像栅格处理到72PPI。

然而在栅格处理的过程中,处理结果的质量和原图质量有很大的关系。比如,一张在改物理尺寸下,信息量可以达到300PPI的图片,被设备栅格到150PPI,它仍然会是清晰的。而如果原信息量只有72PPI,栅格到150PPI就会看起来模糊。

对于印刷设备来说也是一样的,现代印刷机的解析能力一般是300,因此在图片的物理尺寸和预想印刷完成后的物理尺寸相同时,如果信息量达不到300DPI,那么在印刷时就会被印刷设备栅格处理到300DPI,结果就会是模糊的。但上述两者都不能算绝对,毕竟人眼的识别能力也是有限的,比如220DPI的图像被从300DPI的设备中印刷出来,肉眼也基本看不出模糊。

4.简单理解栅格

栅格处理有非常多种算法,在Photoshop中,在缩放图片的时候你可以看到类似“两次立方”、“两次线性”、“临近”这样的选项,指的就是栅格处理的计算方式。

几乎所有的栅格都是有损处理,除了某些算法中的整数倍放大。这很容易理解,毕竟栅格相当于一种缩放。试想,你将5×5像素的图片栅格成4×4像素会发生什么?由于像素完全无法一一对应,4×4像素的图片中,每个像素都需要根据原图中的9个像素来计算新的色值,因此原图的信息受到了不可逆的破坏。

实际应用

原理说了不少,那么应用的时候我们应该注意什么?

1.在条件允许的情况下,图片分辨率越高越好

我们可能不会有精力去关心图片信息量的DPI是多少,印刷设备的DPI又是多少这种细节的问题。但有一点是可以确定的,那就是图片只要足够大,印刷就会清晰。

2.如果有可能,使用准确的数值

许多软件可以帮助你了解图片实际尺寸下的PPI,比如使用Photoshop,在300PPI下创建A4的文件(尺寸21×29.7厘米,对应分辨率2480×3508像素)并做出图片,那么大多数情况下都可以完美印刷。正如前文所述,大多印刷设备的解析能力是300DPI,因此在该图片的信息量下,1个像素刚好对应1个点,甚至不需要栅格处理。而如果你强行使用400PPI来创建A4尺寸的文件,拿到300DPI的设备上会被栅格,说不定还不如300DPI的质量好(毕竟是有损处理,但这种差别未必能看得出来)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,835评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,598评论 1 295
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,569评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,159评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,533评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,710评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,923评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,674评论 0 203
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,421评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,622评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,115评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,428评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,114评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,097评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,875评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,753评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,649评论 2 271

推荐阅读更多精彩内容