redis008--大海捞针Scan

在平时线上 Redis 维护工作中,有时候需要从 Redis 实例成千上万的 key 中找出特定前缀的 key 列表来手动处理数据,可能是修改它的值,也可能是删除 key。这里就有一个问题,如何从海量的 key 中找出满足特定前缀的 key 列表来?
Redis 提供了一个简单暴力的指令 keys 用来列出所有满足特定正则字符串规则的 key。

127.0.0.1:6379> set codehole1 a
OK
127.0.0.1:6379> set codehole2 b
OK
127.0.0.1:6379> set codehole3 c
OK
127.0.0.1:6379> set code1hole a
OK
127.0.0.1:6379> set code2hole b
OK
127.0.0.1:6379> set code3hole b
OK
127.0.0.1:6379> keys *
1) "codehole1"
2) "code3hole"
3) "codehole3"
4) "code2hole"
5) "codehole2"
6) "code1hole"
127.0.0.1:6379> keys codehole*
1) "codehole1"
2) "codehole3"
3) "codehole2"
127.0.0.1:6379> keys code*hole
1) "code3hole"
2) "code2hole"
3) "code1hole"

这个指令使用非常简单,提供一个简单的正则字符串即可,但是有很明显的两个 缺点。1、没有 offset、limit 参数,一次性吐出所有满足条件的 key,万一实例中有几百 w 个key 满足条件,当你看到满屏的字符串刷的没有尽头时,你就知道难受了。
2、keys 算法是遍历算法,如果实例中有千万级以上的 key,这个指令就会导致 Redis 服务卡顿,所有读写 Redis 的其它的指令都会被延后甚至会超时报错,因为Redis 是单线程程序,顺序执行所有指令,其它指令必须等到当前的 keys 指令执行完了才可以继续。

Redis 为了解决这个问题,它在 2.8 版本中加入了大海捞针的指令——scan。scan 相比keys 具备有以下特点:
1、它是通过游标分步进行的,不会阻塞线程;
2、提供 limit 参数,可以控制每次返回结果的最大条数,limit 只是一个 hint,返回的结果可多可少;
3、同 keys 一样,它也提供模式匹配功能;
4、服务器不需要为游标保存状态,游标的唯一状态就是 scan 返回给客户端的游标整数;
5、返回的结果可能会有重复,需要客户端去重复,这点非常重要;
6、遍历的过程中如果有数据修改,改动后的数据能不能遍历到是不确定的;
7、单次返回的结果是空的并不意味着遍历结束,而要看返回的游标值是否为零;

scan 基础使用

在使用之前,让我们往 Redis 里插入 10000 条数据来进行测试好,Redis 中现在有了 10000 条数据,接下来我们找出以 key99 开头 key 列表。
scan 参数提供了三个参数,第一个是 cursor 整数值,第二个是 key 的正则模式,第三个是遍历的 limit hint。第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为
下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。

127.0.0.1:6379> scan 0 match key99* count 1000
1) "13976"
2) 1) "key9911"
2) "key9974"
3) "key9994"
4) "key9910"
5) "key9907"
6) "key9989"
7) "key9971"
8) "key99"
9) "key9966"
10) "key992"
11) "key9903"
12) "key9905"
127.0.0.1:6379> scan 13976 match key99* count 1000
1) "1996"
2) 1) "key9982"
2) "key9997"
3) "key9963"
4) "key996"
5) "key9912"
6) "key9999"
7) "key9921"
8) "key994"
9) "key9956"
10) "key9919"
127.0.0.1:6379> scan 1996 match key99* count 1000
1) "12594"
2) 1) "key9939"
2) "key9941"
3) "key9967"
4) "key9938"
5) "key9906"
6) "key999"
7) "key9909"
8) "key9933"
9) "key9992"
......
127.0.0.1:6379> scan 11687 match key99* count 1000
1) "0"
2) 1) "key9969"
    2) "key998"
    3) "key9986"
    4) "key9968"
    5) "key9965"
    6) "key9990"
    7) "key9915"
    8) "key9928"
    9) "key9908"
    10) "key9929"
    11) "key9944"

从上面的过程可以看到虽然提供的 limit 是 1000,但是返回的结果只有 10 个左右。因为这个 limit 不是限定返回结果的数量,而是限定服务器单次遍历的字典槽位数量(约等)。如果将 limit 设置为 10,你会发现返回结果是空的,但是游标值不为零,意味着遍历还没结束。

127.0.0.1:6379> scan 0 match key99* count 10
1) "3072"
2) (empty list or set)

字典的结构

在 Redis 中所有的 key 都存储在一个很大的字典中,这个字典的结构和 Java 中的HashMap 一样,是一维数组 + 二维链表结构,第一维数组的大小总是 2^n(n>=0),扩容一次数组大小空间加倍,也就是 n++。



scan 指令返回的游标就是第一维数组的位置索引,我们将这个位置索引称为槽 (slot)。如果不考虑字典的扩容缩容,直接按数组下标挨个遍历就行了。limit 参数就表示需要遍历的槽位数,之所以返回的结果可能多可能少,是因为不是所有的槽位上都会挂接链表,有些槽位可能是空的,还有些槽位上挂接的链表上的元素可能会有多个。每一次遍历都会将 limit数量的槽位上挂接的所有链表元素进行模式匹配过滤后,一次性返回给客户端。

scan 遍历顺序

scan 的遍历顺序非常特别。它不是从第一维数组的第 0 位一直遍历到末尾,而是采用了高位进位加法来遍历。之所以使用这样特殊的方式进行遍历,是考虑到字典的扩容和缩容时避免槽位的遍历重复和遗漏。

普通加法和高位进位加法的区别

高位进位法从左边加,进位往右边移动,同普通加法正好相反。但是最终它们都会遍历所有的槽位并且没有重复。

更多的 scan 指令

scan 指令是一系列指令,除了可以遍历所有的 key 之外,还可以对指定的容器集合进行遍历。比如 zscan 遍历 zset 集合元素,hscan 遍历 hash 字典的元素、sscan 遍历 set 集合的元素。
它们的原理同 scan 都会类似的,因为 hash 底层就是字典,set 也是一个特殊的hash(所有的 value 指向同一个元素),zset 内部也使用了字典来存储所有的元素内容

大 key 扫描

有时候会因为业务人员使用不当,在 Redis 实例中会形成很大的对象,比如一个很大的hash,一个很大的 zset 这都是经常出现的。这样的对象对 Redis 的集群数据迁移带来了很
大的问题,因为在集群环境下,如果某个 key 太大,会数据导致迁移卡顿。另外在内存分配
上,如果一个 key 太大,那么当它需要扩容时,会一次性申请更大的一块内存,这也会导致
卡顿。如果这个大 key 被删除,内存会一次性回收,卡顿现象会再一次产生。

在平时的业务开发中,要尽量避免大 key 的产生。

如果你观察到 Redis 的内存大起大落,这极有可能是因为大 key 导致的,这时候你就需要定位出具体是那个 key,进一步定位出具体的业务来源,然后再改进相关业务代码设计。

那如何定位大 key 呢?

为了避免对线上 Redis 带来卡顿,这就要用到 scan 指令,对于扫描出来的每一个key,使用 type 指令获得 key 的类型,然后使用相应数据结构的 size 或者 len 方法来得到它的大小,对于每一种类型,保留大小的前 N 名作为扫描结果展示出来。
上面这样的过程需要编写脚本,比较繁琐,不过 Redis 官方已经在 redis-cli 指令中提供了这样的扫描功能,我们可以直接拿来即用。

redis-cli -h 127.0.0.1 -p 7001 –-bigkeys

如果你担心这个指令会大幅抬升 Redis 的 ops 导致线上报警,还可以增加一个休眠参数。

redis-cli -h 127.0.0.1 -p 7001 –-bigkeys -i 0.1

上面这个指令每隔 100 条 scan 指令就会休眠 0.1s,ops 就不会剧烈抬升,但是扫描的时间会变长。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,569评论 4 363
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,499评论 1 294
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,271评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,087评论 0 209
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,474评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,670评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,911评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,636评论 0 202
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,397评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,607评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,093评论 1 261
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,418评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,074评论 3 237
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,092评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,865评论 0 196
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,726评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,627评论 2 270

推荐阅读更多精彩内容