OpenCV学习笔记(七)中值、双边滤波

一、线性滤波与非线性滤波

之前一篇文章说的方框滤波、均值滤波和高斯滤波都是线性滤波器的原始数据与滤波结果是一种线性的算术运算,即用加减乘除等运算实现,所以称之为线性滤波。

非线性滤波器的原始数据与滤波结果是一种逻辑关系,即通过比较一定邻域内的灰度值大小来实现的。下面介绍的中值滤波和双边滤波就是非线性滤波。

二、中值滤波

中值滤波原理通过一张图就可以看明白:


简言之中值滤波就是把函数框(如图中的3 X 3)内的灰度值按顺序排列,然后中值取代函数框中心的灰度值。所以一般采用奇数点的邻域来计算中值,但如果像素点数为偶数,中值就取排序像素中间两点的平均值。

中值滤波在一定的条件下可以克服常见线性滤波器如方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用,是非常经典的平滑噪声处理方法。

但是中值滤波的缺点也很明显,因为要进行排序操作,所以处理的时间长,是均值滤波的5倍以上。

中值滤波在OpenCV中用medianBlur函数实现,下面是函数声明:

void medianBlur( InputArray src, OutputArray dst, int ksize );

参数很简单,就是输入图像src,输出图像dst,以及核的大小ksize。注意这里的ksize必须为正奇数1,3,5,7……否则程序会出错。

三、双边滤波

双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。
双边滤波器的好处是可以做边缘保存(edge preserving),一般用高斯滤波去降噪,会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

下图是双边滤波的原理示意图:


在双边滤波器中,输出像素的值依赖于邻域像素值的加权值组合:


而加权系数w(i,j,k,l)取决于空域核和值域核的乘积。
(i,j),(k,l)分别指两个像素点的坐标。

其中空域核表示如下(如图):



值域核表示为:



两者相乘后,就会产生依赖于数据的双边滤波权重函数:

d函数是根据像素距离选择权重,距离越近权重越大,这一点和方框滤波,高斯滤波方式相同。而r函数则是根据像素的差异来分配权值。如果两个像素值越接近,即使相距较远,也比差异大而距离近的像素点权重大。正是r函数的作用,使得边缘,即相距近但差异大的像素点的特性得以保留。

OpenCV中用medianBlur函数实现双边滤波。
函数声明:

void bilateralFilter( InputArray src, OutputArray dst, int d,
                                   double sigmaColor, double sigmaSpace,
                                   int borderType = BORDER_DEFAULT );

参数:

  • 第一个参数,InputArray类型的src,输入图像,即源图像,需要为8位或者浮点型单通道、三通道的图像。
  • 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
  • 第三个参数,int类型的d,表示在过滤过程中每个像素邻域的直径。如果这个值我们设其为非正数,那么OpenCV会从第五个参数sigmaSpace来计算出它来。
  • 第四个参数,double类型的sigmaColor,颜色空间滤波器的sigma值。这个参数的值越大,就表明该像素邻域内有更宽广的颜色会被混合到一起,产生较大的半相等颜色区域。
  • 第五个参数,double类型的sigmaSpace坐标空间中滤波器的sigma值,坐标空间的标注方差。他的数值越大,意味着越远的像素会相互影响,从而使更大的区域足够相似的颜色获取相同的颜色。当d>0,d指定了邻域大小且与sigmaSpace无关。否则,d正比于sigmaSpace。
  • 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。

四、示例代码:

#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"  
#include<opencv2/imgproc/imgproc.hpp>  
#include <iostream>  

using namespace cv;

int main(){
    
    Mat img = imread("dog.jpg");//据说丑女经过双边滤波用有美颜效果哦,有兴趣的同学可以试试

    Mat out1,out2,out3;

    medianBlur(img, out1, 35);
    bilateralFilter(img, out2, 25, 25 * 2, 25 / 2);

    namedWindow("中值滤波", 2);

    imshow("中值滤波", out1);

    namedWindow("双边滤波", 2);

    imshow("双边滤波", out2);

    waitKey(0);

    return 0;
}

参考:
http://blog.csdn.net/poem_qianmo/article/details/23184547

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 160,165评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,720评论 1 298
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,849评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,245评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,596评论 3 288
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,747评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,977评论 2 315
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,708评论 0 204
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,448评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,657评论 2 249
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,141评论 1 261
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,493评论 3 258
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,153评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,108评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,890评论 0 198
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,799评论 2 277
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,685评论 2 272

推荐阅读更多精彩内容