迈向HTTPS(四)HTTPS到底解决了什么问题

很多人一提到 HTTPS,第一反应就是安全,对于普通用户来说这就足够了,对于程序员来说,有必要了解下 HTTP 到底有什么问题?HTTPS 是如何解决的?其背后的解决思路和方法是什么?下面坐下简单的描述,HTTPS 体系非常复杂,自己无法做到很详细和精准的分析。

性能

HTTP 有典型的几个问题,第一就是性能,HTTP 是基于 TCP 的,所以网络层就不说了(快慢不是 HTTP 的问题)。比较严重的问题在于 HTTP 头是不能压缩的,每次要传递很大的数据包。另外 HTTP 的请求模型是每个连接只能支持一个请求,所以会显得很慢。

那么 HTTPS 是解决这些问题的吗?不是,实际上 HTTPS 是在 HTTP 协议上又加了一层,会更慢,相信未来会逐步解决的。同时 HTTPS 用到了很多加密算法,这些算法的执行也是会影响速度的。

为什么说 HTTPS 提升了性能呢,因为只有支持了 HTTPS,才能部署 HTTP/2,而 HTTP/2 协议会提升速度,能够有效减轻客户端和服务器端的压力,让响应更快速,HTTP/2 未来会写一篇文章说说,这里只要知道一点:HTTP/2 能够加快速度的主要原因在于多路复用,同一个连接能够并行发送和接收多个请求。

安全性

当用户在浏览器输入一个网址的时候,在地址栏上看到小锁图标,就会安心,潜意识的认为自己的上网行为是安全的,当然对于小白用户来说可能还不明白,但是未来会慢慢改善的(万事开头难吗)。

那么 HTTP 到底有什么安全问题呢,看几个例子:

(1)由于互联网传输是能够被拦截的,所以假如你的上网方式被别人控制了(没有绝对的安全),那么你的任何行为和信息攻击者都会知道,比如我们连上一个匿名的 WIFI,当你上网的时候,输入的网站密码可能就已经泄漏了。

(2)当我们在上一个网站的时候,莫名其妙跳出一个广告(这个广告并不是这个网站的),那是因为访问的页面可能被运营商强制修改了(加入了他自己的内容,比如广告)。

HTTP 最大的问题就在于数据没有加密,以及通信双方没有办法进行身份验证( confidentiality and authentication),由于数据没有加密,那么只要数据包被攻击者劫持,信息就泄漏了。身份验证的意思就是服务器并不知道连接它的客户端到底是谁,而客户端也不确定他连接的服务器就是他想连接的服务器,双方之间没有办法进行身份确认。

HTTPS 背后的密码学

为了解决 HTTP 的两个核心问题,HTTPS 出现了,HTTPS 包含了核心的几个部分,TLS 协议、OpenSSL,证书。什么是 OpenSSL 呢,它实现了世界上非常重要和多的密码算法,而密码学是解决问题最重要的一个环节。TLS 最重要的是握手的处理方式。证书的体系也很大,但是他们背后都是基于同样的密码学。

(1)既然 HTTP 没有数据加密,那么我们就加密下,对称加密算法上场了,这种算法加密和解密要使用同一个密钥,通信双方需要知道这个密钥(或者每次协商一个),实际上这种方法不太可能,这涉及到密钥保密和配送的问题,一旦被攻击者知道了密钥,那么传输的数据等同没有加密。

(2)这个时候非对称加密算法上场了,公钥和私钥是分开的,客户端保存公钥,服务器保存私钥(不会公开),这时候好像能够完美解决问题了。但实际上会存在两个问题,第一就是非对称加密算法运算很慢,第二就是会遇到中间人攻击问题。先说说中间人攻击的问题,假如使用非对称加密算法,对于客户端来说它拿到的公钥可能并不是真正服务器的公钥,因为客户端上网的时候可能不会仔细分辨某个公钥是和某个公司绑定的,假如错误的拿到攻击者的公钥,那么他发送出去的数据包被劫持后,攻击者用自己的私钥就能反解了。

(5)接下来如何解决公钥认证的问题呢?证书出现了,证书是由 CA 机构认证的,客户端都充分信任它,它能够证明你拿到的公钥是特定机构的,然后就能使用非对称加密算法加密了。证书是怎么加密的呢?实际上也是通过非对称加密算法,但是区别在于证书是用私钥加密,公钥解密。CA 机构会用自己的私钥加密服务器用户的公钥,而客户端则用 CA 机构的公钥解出服务器的公钥。听上去有点晕,仔细体会下。

(6)上面说了非对称加密算法加密解密非常耗时,对于 HTTP 这样的大数据包,速度就更慢了,这时候可以使用对称加密算法,这个密钥是由客户端和服务器端协商出来,并由服务器的公钥进行加密传递,所以不存在安全问题。

(7)另外客户端拿到证书后会验证证书是否正确,它验证的手段就是通过 Hash 摘要算法,CA 机构会将证书信息通过 Hash 算法运算后再用私钥加密,客户端用 CA 的公钥解出后,再计算证书的 Hash 摘要值,两者一致就说明验证身份通过。

(8)HTTPS 解决的第三个问题是完整性问题,就是信息有没有被篡改(信息能够被反解),用的是 HMAC 算法,这个算法和 Hash 方法差不多,但是需要传递一个密钥,这个密钥就是客户端和服务器端上面协商出来的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,219评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,363评论 1 293
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,933评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,020评论 0 206
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,400评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,640评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,896评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,597评论 0 199
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,327评论 1 244
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,581评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,072评论 1 261
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,399评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,054评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,083评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,849评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,672评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,585评论 2 270

推荐阅读更多精彩内容