RSA相关

最近一直在学习CTF密码学相关问题 以下列举几道被恶心的不要不要的题目,顺便分享一些思路和做法。

检查符号
截取一段电波,一不小心全变成了泡泡。你能够解密吗?
"o00。o。o0oo。0o0o。000。00。o。0。000。ooo0。o。0o。oo0。ooo。0o0o。0。oo0o"
答案格式:key{flag},flag是解密内容

拿到此题,观察像是摩斯电码加密,电波里句号是分隔符,让它变成空格,然后o变. 0变-使用notepad++即可实现。摩斯电码如下:

.-- . .-.. -.-. --- -- . - --- ...- . -. ..- ... -.-. - ..-.

解密网站
拿到字符串WELCOMETOVENUSCTF,不要急着提交,不然会提示你ERROR的。。。回过头看看题目里的TIPS,检查符号!大写变小写~好了这只是最温柔的一个坑。。。

第二道:

规则很公平
vv公司称,他们给出了最为公平的游戏规则,你能猜到是什么吗? 
规则:CGOCPMOFEBMLUNISEOZY.
附件:CULTREABDFGHIKMNOPQSVWXYZ. 
答案的格式是key{xxxxx},所以答案是

首先Tips就是公平,你会发现Playfair这个东西,做密码表然后开始解密吧!

接下来就走上了非对称算法:RSA的不归路。。。

先简单看一下什么是RSA吧:

RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。1987年7月首次在美国公布,当时他们三人都在麻省理工学院工作实习。RSA就是他们三人姓氏开头字母拼在一起组成的。
RSA是目前最有影响力和最常用的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准

今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。但在分布式计算量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战和质疑。

RSA算法基于一个十分简单的数论事实:将两个大质数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。

再来看一下具体的加解密算法:

RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。RSA的算法涉及三个参数,n、e1、e2。其中,n是两个大质数p、****q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。

e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2×e1)≡1(mod(p-1)×(q-1))。

(n,e1),(n,e2)就是密钥对。其中(n,e1)为公钥(n,e2)为私钥。

RSA加解密的算法完全相同,设A为明文,B为密文,则:A≡B^e2( mod n);B≡A^e1 (mod n);(公钥加密体制中,一般用公钥加密,私钥解密)

e1和e2可以互换使用,即:

A≡B^e1 (mod n);B≡A^e2( mod n);

那么开始肝题吧:

得到了公钥,怎么才能解密呢?
tip分解n,答案格式ISG{flag}

RSA分解

在public.pem里是标准公钥文件,使用Openssl对其进行提取,可以得到十六进制的大数n和模数e,本题的难点就在于分解n,将一个大数分解为两个质数的乘积。。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,716评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,558评论 1 294
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,431评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,127评论 0 209
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,511评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,692评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,915评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,664评论 0 202
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,412评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,616评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,105评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,424评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,098评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,096评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,869评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,748评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,641评论 2 271

推荐阅读更多精彩内容