4.fMRI和DTI的原理及应用简介--认知神经科学系列文

首先介绍下什么是MRI:(这里的介绍引自维基百科)

核磁共振成像(英语:Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(英语:spin imaging),也称磁共振成像Magnetic Resonance Imaging,简称MRI),台湾又称磁振造影,香港又称磁力共振成像,是利用核磁共振(nuclear magnetic resonance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。
将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学神经生理学认知神经科学的迅速发展。
从核磁共振现象发现到MRI技术成熟这几十年期间,有关核磁共振的研究领域曾在三个领域(物理学化学生理学医学)内获得了6次诺贝尔奖,足以说明此领域及其衍生技术的重要性。

接下来我们看看加上f之后的MRI(即fMRI)如何理解

功能性磁共振成像(fMRI,functional Magnetic Resonance Imaging)是一种神经影像学技术。其原理是利用磁振造影来测量神经元活动所引发之血液动力的改变。由于fMRI的非侵入性和其较少的辐射暴露量,从1990年代开始其就在脑部功能定位领域占有了重要地位。目前,fMRI主要被运用于对及动物的脊髓之研究中。

由于神经元本身并没有储存所需的葡萄糖氧气,神经活化所消耗的能量必须快速地补充。经由血液动力反应的过程,血液释出葡萄糖氧气的比率相较于未活化神经元区域大幅提升。这导致了过多的带氧血红素充满于活化神经元处,而明显的带氧/缺氧血红素比例变化使得BOLD可作为MRI的测量指标之一。
血红素氧化状态(带氧血红素)的时候为抗磁性的,相对于缺氧血红素为顺磁性的。根据血液中血红素的氧化比率可轻易的分辨出不同的磁共振讯号。血液中带氧血红素的浓度上升,相对的BOLD信号也会随之加强。借由MRI搜集这些血氧浓度相依比讯号可以得知脑部中的血流与氧气消耗量值。虽然这些讯号是极小量的,但仍可以表现出脑部中脑区的活化程度。当脑部正思考或做动作或是接受一种经验过程,可以利用一系列严密的测量来确定哪些脑区是负责思考、运动、经历经验。

几乎大部分的功能性磁共振成像都是用BOLD的方法来侦测脑中的反应区域,但因为这个方法得到的信号是相对且非定量的,使得人们质疑它的可靠性。因此,还有其他能更直接侦测神经活化的方法(像是氧抽取率(Oxygen Extraction Fraction, OEF)这种估算多少带氧血红素被转变成去氧血红素的方法;或侦测神经讯号造成的电磁场变化)被提出来,但由于神经活化所造成的电磁场变化非常微弱,过低的信杂比使得至今仍无法可靠地统计定量。

第一部分——fMRI
fMRI:功能磁共振成像
MRI与fMRI的对比:


image.png
image.png
image.png
image.png

BOLD-fMRI的原理:

image.png
image.png
image.png
image.png
image.png

fMRI研究及应用举例

image.png
image.png

第二部分——DTI


image.png

DTI成像的基本原理


image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png

DTI的彩色弥散张量图


image.png
image.png

前景与展望:


image.png

不足:


image.png
image.png
image.png
image.png

以上内容整理自网络,仅供学习使用。后续更新也在本文基础上逐步完善。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270