全局唯一ID设计

在分布式系统中,经常需要使用全局唯一ID查找对应的数据。产生这种ID需要保证系统全局唯一,而且要高性能以及占用相对较少的空间。

全局唯一ID在数据库中一般会被设成主键,这样为了保证数据插入时索引的快速建立,还需要保持一个有序的趋势。

这样全局唯一ID就需要保证这两个需求:

  • 全局唯一
  • 趋势有序

全局ID产生的几种方式

数据库自增

当服务使用的数据库只有单库单表时,可以利用数据库的auto_increment来生成全局唯一递增ID.

优势:

  • 简单,无需程序任何附加操作
  • 保持定长的增量
  • 在单表中能保持唯一性

劣势:

  • 高并发下性能不佳,主键产生的性能上限是数据库服务器单机的上限。
  • 水平扩展困难,在分布式数据库环境下,无法保证唯一性。

UUID

一般的语言中会自带UUID的实现,比如Java中UUID方式UUID.randomUUID().toString(),可以通过服务程序本地产生,ID的生成不依赖数据库的实现。

优势:

  • 本地生成ID,不需要进行远程调用。
  • 全局唯一不重复。
  • 水平扩展能力非常好。

劣势:

  • ID有128 bits,占用的空间较大,需要存成字符串类型,索引效率极低。
  • 生成的ID中没有带Timestamp,无法保证趋势递增

Twitter Snowflake

snowflake是twitter开源的分布式ID生成算法,其核心思想是:产生一个long型的ID,使用其中41bit作为毫秒数,10bit作为机器编号,12bit作为毫秒内序列号。这个算法单机每秒内理论上最多可以生成1000*(2^12)个,也就是大约400W的ID,完全能满足业务的需求。

根据snowflake算法的思想,我们可以根据自己的业务场景,产生自己的全局唯一ID。因为Java中long类型的长度是64bits,所以我们设计的ID需要控制在64bits。

比如我们设计的ID包含以下信息:

| 41 bits: Timestamp | 3 bits: 区域 | 10 bits: 机器编号 | 10 bits: 序列号 |

产生唯一ID的Java代码:

import java.security.SecureRandom;

/**
 * 自定义 ID 生成器
 * ID 生成规则: ID长达 64 bits
 * 
 * | 41 bits: Timestamp (毫秒) | 3 bits: 区域(机房) | 10 bits: 机器编号 | 10 bits: 序列号 |
 */
public class CustomUUID {
    // 基准时间
    private long twepoch = 1288834974657L; //Thu, 04 Nov 2010 01:42:54 GMT
    // 区域标志位数
    private final static long regionIdBits = 3L;
    // 机器标识位数
    private final static long workerIdBits = 10L;
    // 序列号识位数
    private final static long sequenceBits = 10L;

    // 区域标志ID最大值
    private final static long maxRegionId = -1L ^ (-1L << regionIdBits);
    // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 序列号ID最大值
    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);

    // 机器ID偏左移10位
    private final static long workerIdShift = sequenceBits;
    // 业务ID偏左移20位
    private final static long regionIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移23位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + regionIdBits;

    private static long lastTimestamp = -1L;

    private long sequence = 0L;
    private final long workerId;
    private final long regionId;

    public CustomUUID(long workerId, long regionId) {

        // 如果超出范围就抛出异常
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");
        }
        if (regionId > maxRegionId || regionId < 0) {
            throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0");
        }

        this.workerId = workerId;
        this.regionId = regionId;
    }

    public CustomUUID(long workerId) {
        // 如果超出范围就抛出异常
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");
        }
        this.workerId = workerId;
        this.regionId = 0;
    }

    public long generate() {
        return this.nextId(false, 0);
    }

    /**
     * 实际产生代码的
     *
     * @param isPadding
     * @param busId
     * @return
     */
    private synchronized long nextId(boolean isPadding, long busId) {

        long timestamp = timeGen();
        long paddingnum = regionId;

        if (isPadding) {
            paddingnum = busId;
        }

        if (timestamp < lastTimestamp) {
            try {
                throw new Exception("Clock moved backwards.  Refusing to generate id for " + (lastTimestamp - timestamp) + " milliseconds");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }

        //如果上次生成时间和当前时间相同,在同一毫秒内
        if (lastTimestamp == timestamp) {
            //sequence自增,因为sequence只有10bit,所以和sequenceMask相与一下,去掉高位
            sequence = (sequence + 1) & sequenceMask;
            //判断是否溢出,也就是每毫秒内超过1024,当为1024时,与sequenceMask相与,sequence就等于0
            if (sequence == 0) {
                //自旋等待到下一毫秒
                timestamp = tailNextMillis(lastTimestamp);
            }
        } else {
            // 如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加,
            // 为了保证尾数随机性更大一些,最后一位设置一个随机数
            sequence = new SecureRandom().nextInt(10);
        }

        lastTimestamp = timestamp;

        return ((timestamp - twepoch) << timestampLeftShift) | (paddingnum << regionIdShift) | (workerId << workerIdShift) | sequence;
    }

    // 防止产生的时间比之前的时间还要小(由于NTP回拨等问题),保持增量的趋势.
    private long tailNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }

    // 获取当前的时间戳
    protected long timeGen() {
        return System.currentTimeMillis();
    }
}

使用自定义的这种方法需要注意的几点:

  • 为了保持增长的趋势,要避免有些服务器的时间早,有些服务器的时间晚,需要控制好所有服务器的时间,而且要避免NTP时间服务器回拨服务器的时间。
  • 在跨毫秒时,序列号总是归0,会使得序列号为0的ID比较多,导致生成的ID取模后不均匀,所以序列号不是每次都归0,而是归一个0到9的随机数。
  • 使用这个CustomUUID类,最好在一个系统中能保持单例模式运行。

python版本的snowflake算法实现(感谢 @mailto1587 的python版本翻译):

import sys
import random
import threading
import time

from concurrent import futures


class Snowflake(object):
    region_id_bits = 2
    worker_id_bits = 10
    sequence_bits = 11

    MAX_REGION_ID = -1 ^ (-1 << region_id_bits)
    MAX_WORKER_ID = -1 ^ (-1 << worker_id_bits)
    SEQUENCE_MASK = -1 ^ (-1 << sequence_bits)

    WORKER_ID_SHIFT = sequence_bits
    REGION_ID_SHIFT = sequence_bits + worker_id_bits
    TIMESTAMP_LEFT_SHIFT = (sequence_bits + worker_id_bits + region_id_bits)

    def __init__(self, worker_id, region_id=0):
        self.twepoch = 1288834974657
        self.last_timestamp = -1
        self.sequence = 0

        assert 0 <= worker_id <= Snowflake.MAX_WORKER_ID
        assert 0 <= region_id <= Snowflake.MAX_REGION_ID

        self.worker_id = worker_id
        self.region_id = region_id

        self.lock = threading.Lock()

    def generate(self, bus_id=None):
        return self.next_id(
            True if bus_id is not None else False,
            bus_id if bus_id is not None else 0
        )

    def next_id(self, is_padding, bus_id):
        with self.lock:
            timestamp = self.get_time()
            padding_num = self.region_id
            

            if is_padding:
                padding_num = bus_id

            if timestamp < self.last_timestamp:
                try:
                    raise ValueError(
                        'Clock moved backwards. Refusing to'
                        'generate id for {0} milliseconds.'.format(
                            self.last_timestamp - timestamp
                        )
                    )
                except ValueError:
                    print(sys.exc_info[2])

            if timestamp == self.last_timestamp:
                self.sequence = (self.sequence + 1) & Snowflake.SEQUENCE_MASK
                if self.sequence == 0:
                    timestamp = self.tail_next_millis(self.last_timestamp)
            else:
                self.sequence = random.randint(0, 9)

            self.last_timestamp = timestamp

            return (
                (timestamp - self.twepoch) << Snowflake.TIMESTAMP_LEFT_SHIFT |
                (padding_num << Snowflake.REGION_ID_SHIFT) |
                (self.worker_id << Snowflake.WORKER_ID_SHIFT) |
                self.sequence
            )

    def tail_next_millis(self, last_timestamp):
        timestamp = self.get_time()
        while timestamp <= last_timestamp:
            timestamp = self.get_time()
        return timestamp

    def get_time(self):
        return int(time.time() * 1000)


def main():
    id_set = set()
    snowflake = Snowflake(1)

    def gen_id():
        try:
            _id = snowflake.generate()
        except Exception as e:
            print(e)
        else:
            assert _id not in id_set
            id_set.add(_id)

    with futures.ThreadPoolExecutor(max_workers=16) as executor:
        futs = [executor.submit(gen_id) for _ in range(100)]

    print('{0} IDs in the set'.format(len(id_set)))

if __name__ == '__main__':
    main()

推荐阅读更多精彩内容