TCP协议之如何保证数据传输可靠性

TCP协议传输数据的特点主要是面向字节流、传输可靠、面向连接。保证数据传输可靠性的方式如下:

校验和

序列号

TCP传输数据时对每个字节的数据都进行了编号,这就是序列号。

确认应答

超时重传

在进行TCP传输时,由于确认应答与序列号机制,也就是说发送方发送一部分数据后,都会等待接收方发送的ACK报文,并解析ACK报文,判断数据是否传输成功。如果发送方发送完数据后,迟迟没有等到接收方的ACK报文,这该怎么办呢?而没有收到ACK报文的原因可能是什么呢?
首先,发送方没有接收到响应的ACK报文原因可能有两点:
(1)数据在传输过程中由于网络原因等直接全体丢包,接收方根本没有接收到。
(2)接收方接收到了响应的数据,但是发送的ACK报文响应却由于网络原因丢包了。
TCP在解决这个问题的时候引入了一个新的机制,叫做超时重传机制。简单理解就是发送方在发送完数据后等待一个时间,时间到达没有接收到ACK报文,那么对刚才发送的数据进行重新发送。如果是刚才第一个原因,接收方收到二次重发的数据后,便进行ACK应答。如果是第二个原因,接收方发现接收的数据已存在(判断存在的根据就是序列号,所以上面说序列号还有去除重复数据的作用),那么直接丢弃,仍旧发送ACK应答。
那么发送方发送完毕后等待的时间是多少呢?如果这个等待的时间过长,那么会影响TCP传输的整体效率,如果等待时间过短,又会导致频繁的发送重复的包。如何权衡?
由于TCP传输时保证能够在任何环境下都有一个高性能的通信,因此这个最大超时时间(也就是等待的时间)是动态计算的。

在Linux中(BSD Unix和Windows下也是这样)超时以500ms为一个单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。重发一次后,仍未响应,那么等待2500ms的时间后,再次重传。等待4500ms的时间继续重传。以一个指数的形式增长。累计到一定的重传次数,TCP就认为网络或者对端出现异常,强制关闭连接。

连接管理

连接管理就是三次握手与四次挥手的过程,这里不再赘述。保证可靠的连接,是保证可靠性的前提。

流量控制

接收端在接收到数据后,对其进行处理。如果发送端的发送速度太快,导致接收端的结束缓冲区很快的填充满了。此时如果发送端仍旧发送数据,那么接下来发送的数据都会丢包,继而导致丢包的一系列连锁反应,超时重传呀什么的。而TCP根据接收端对数据的处理能力,决定发送端的发送速度,这个机制就是流量控制。

在TCP协议的报头信息当中,有一个16位字段的窗口大小。在介绍这个窗口大小时我们知道,窗口大小的内容实际上是接收端接收数据缓冲区的剩余大小。这个数字越大,证明接收端接收缓冲区的剩余空间越大,网络的吞吐量越大。接收端会在确认应答发送ACK报文时,将自己的即时窗口大小填入,并跟随ACK报文一起发送过去。而发送方根据ACK报文里的窗口大小的值的改变进而改变自己的发送速度。如果接收到窗口大小的值为0,那么发送方将停止发送数据。并定期的向接收端发送窗口探测数据段,让接收端把窗口大小告诉发送端。
注:16位的窗口大小最大能表示65535个字节(64K),但是TCP的窗口大小最大并不是64K。在TCP首部中40个字节的选项中还包含了一个窗口扩大因子M,实际的窗口大小就是16位窗口字段的值左移M位。每移一位,扩大两倍。

拥塞控制

TCP传输数据的过程中,发送端如果一开始就发送大量的数据,就可能造成一些问题,网络可能在开始的时候就很拥堵,如果继续往网络中扔出大量数据,那么这个拥堵就会加剧。拥堵的加剧就会产生大量的丢包,从而导致大量的超时重传,严重影响传输。
所以TCP引入了慢启动的机制,在开始发送数据时,先发送少量的数据探路。探清当前的网络状态,再决定多大的速度进行传输。这时候就引入一个叫做拥塞窗口的概念。发送刚开始定义拥塞窗口为 1,每次收到ACK应答,拥塞窗口加 1。在发送数据之前,首先将拥塞窗口与接收端反馈的窗口大小比对,取较小的值作为实际发送的窗口。

拥塞窗口的增长是指数级别的。慢启动的机制只是说明在开始的时候发送的少,发送的慢,但是增长的速度是非常快的。为了控制拥塞窗口的增长,不能让拥塞窗口一直加倍,因此设置一个拥塞窗口的阈值,当拥塞窗口大小超过阈值时,不能再按照指数来增长,而是线性的增长。在慢启动开始的时候,慢启动的阈值等于窗口的最大值,一旦造成网络拥塞,发生超时重传时,慢启动的阈值会减为原来的一半(这里的原来指的是发生网络拥塞时拥塞窗口的大小),同时拥塞窗口重置为 1。
拥塞控制是TCP在传输时尽可能快的将数据传输,并且避免拥塞造成的一系列问题。是可靠性的保证,同时也是维护了传输的高效性。

参考:

https://blog.csdn.net/liuchenxia8/article/details/80428157

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 160,444评论 4 365
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,867评论 1 298
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 110,157评论 0 248
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,312评论 0 214
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,673评论 3 289
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,802评论 1 223
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 32,010评论 2 315
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,743评论 0 204
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,470评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,696评论 2 250
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,187评论 1 262
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,538评论 3 258
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,188评论 3 240
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,127评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,902评论 0 198
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,889评论 2 283
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,741评论 2 274