token机制

什么是token

token的意思是“令牌”,是服务端生成的一串字符串,作为客户端进行请求的一个标识。

当用户第一次登录后,服务器生成一个token并将此token返回给客户端,以后客户端只需带上这个token前来请求数据即可,无需再次带上用户名和密码。

简单token的组成;uid(用户唯一的身份标识)、time(当前时间的时间戳)、sign(签名,token的前几位以哈希算法压缩成的一定长度的十六进制字符串。为防止token泄露)。

身份认证概述

由于HTTP是一种没有状态的协议,它并不知道是谁访问了我们的应用。这里把用户看成是客户端,客户端使用用户名还有密码通过了身份验证,不过下次这个客户端再发送请求时候,还得再验证一下。

通用的解决方法就是,当用户请求登录的时候,如果没有问题,在服务端生成一条记录,在这个记录里可以说明登录的用户是谁,然后把这条记录的id发送给客户端,客户端收到以后把这个id存储在cookie里,下次该用户再次向服务端发送请求的时候,可以带上这个cookie,这样服务端会验证一下cookie里的信息,看能不能在服务端这里找到对应的记录,如果可以,说明用户已经通过了身份验证,就把用户请求的数据返回给客户端。

以上所描述的过程就是利用session,那个id值就是sessionid。我们需要在服务端存储为用户生成的session,这些session会存储在内存,磁盘,或者数据库。

基于token机制的身份认证

使用token机制的身份验证方法,在服务器端不需要存储用户的登录记录。大概的流程:

客户端使用用户名和密码请求登录。服务端收到请求,验证用户名和密码。验证成功后,服务端会生成一个token,然后把这个token发送给客户端。客户端收到token后把它存储起来,可以放在cookie或者Local Storage(本地存储)里。客户端每次向服务端发送请求的时候都需要带上服务端发给的token。服务端收到请求,然后去验证客户端请求里面带着token,如果验证成功,就向客户端返回请求的数据。

利用token机制进行登录认证,可以有以下方式:

a.用设备mac地址作为token

客户端:客户端在登录时获取设备的mac地址,将其作为参数传递到服务端

服务端:服务端接收到该参数后,便用一个变量来接收,同时将其作为token保存在数据库,并将该token设置到session中。客户端每次请求的时候都要统一拦截,将客户端传递的token和服务器端session中的token进行对比,相同则登录成功,不同则拒绝。

此方式客户端和服务端统一了唯一的标识,并且保证每一个设备拥有唯一的标识。缺点是服务器端需要保存mac地址;优点是客户端无需重新登录,只要登录一次以后一直可以使用,对于超时的问题由服务端进行处理。

b.用sessionid作为token

客户端:客户端携带用户名和密码登录

服务端:接收到用户名和密码后进行校验,正确就将本地获取的sessionid作为token返回给客户端,客户端以后只需带上请求的数据即可。

此方式的优点是方便,不用存储数据,缺点就是当session过期时,客户端必须重新登录才能请求数据。

当然,对于一些保密性较高的应用,可以采取两种方式结合的方式,将设备mac地址与用户名密码同时作为token进行认证。

APP利用token机制进行身份认证

用户在登录APP时,APP端会发送加密的用户名和密码到服务器,服务器验证用户名和密码,如果验证成功,就会生成相应位数的字符产作为token存储到服务器中,并且将该token返回给APP端。

以后APP再次请求时,凡是需要验证的地方都要带上该token,然后服务器端验证token,成功返回所需要的结果,失败返回错误信息,让用户重新登录。其中,服务器上会给token设置一个有效期,每次APP请求的时候都验证token和有效期。

token的存储

token可以存到数据库中,但是有可能查询token的时间会过长导致token丢失(其实token丢失了再重新认证一个就好,但是别丢太频繁,别让用户没事儿就去认证)。

为了避免查询时间过长,可以将token放到内存中。这样查询速度绝对就不是问题了,也不用太担心占据内存,就算token是一个32位的字符串,应用的用户量在百万级或者千万级,也是占不了多少内存的。

token的加密

token是很容易泄露的,如果不进行加密处理,很容易被恶意拷贝并用来登录。加密的方式一般有:

在存储的时候把token进行对称加密存储,用到的时候再解密。文章最开始提到的签名sign:将请求URL、时间戳、token三者合并,通过算法进行加密处理。

最好是两种方式结合使用。

还有一点,在网络层面上token使用明文传输的话是非常危险的,所以一定要使用HTTPS协议。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 160,026评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,655评论 1 296
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,726评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,204评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,558评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,731评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,944评论 2 314
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,698评论 0 203
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,438评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,633评论 2 247
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,125评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,444评论 3 255
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,137评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,103评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,888评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,772评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,669评论 2 271

推荐阅读更多精彩内容