机器学习特征处理——独热编码(One-Hot Encoding)

在机器学习算法中,常会遇到分类特征是离散的,无序的。例如:性别有男、女,城市有北京,上海,深圳等。

性别特征:
["男","女"] => 0,1
地区特征:
["北京","上海,"深圳"] => 0,1,2
工作特征:
["演员","厨师","公务员","工程师","律师"] => 0,1,2,3,4

比如,样本(女,北京,工程师)=>(1,0,3),但是,这样的特征处理并不能直接放入机器学习算法中,因为,分类器通常数据是连续且有序。解决这类问题,一种解决方法是采用独热编码(One-Hot Encoding)。

什么是独热编码

独热编码(One-Hot Encoding),又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。即,只有一位是1,其余都是零值。

例如,对六个状态进行编码:
自然顺序码为 000,001,010,011,100,101
独热编码则是 000001,000010,000100,001000,010000,100000

回到一开始的例子,性别特征:["男","女"],按照N位状态寄存器来对N个状态进行编码的原理:

性别特征:["男","女"](这里N=2)
男 => 10
女 => 01

地区特征:["北京","上海,"深圳"](这里N=3):
北京 => 100
上海 => 010
深圳 => 001

工作特征:["演员","厨师","公务员","工程师","律师"](这里N=5):
演员 => 10000
厨师 => 01000
公务员 => 00100
工程师 => 00010
律师 => 00001

所以,样本的特征是["女","北京","工程师"]的时候,独热编码(One-Hot Encoding)的结果为:

[0,1,1,0,0,0,0,0,1,0]

为什么要进行独热编码

在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的。而常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。
使用独热编码(One-Hot Encoding),将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用独热编码(One-Hot Encoding),会让特征之间的距离计算更加合理。
比如,上面的工作特征,该离散型特征,共有五个取值,不使用独热编码(One-Hot Encoding),其表示分别是:

演员 = (0)
厨师 = (1)
公务员 = (2)
工程师 = (3)
律师 = (4)

两个工作之间的距离是:

d(演员,厨师) = 1
d(厨师,公务员) = 1
d(公务员,工程师) = 1
d(工程师,律师) = 1
d(演员,公务员) = 2
d(演员,工程师) = 3
.....

显然这样的表示,计算出来的特征的距离是不合理。那如果使用独热编码(One-Hot Encoding),则得到d(演员,厨师) = 1与d(演员,公务员)都是1。那么,两个工作之间的距离就都是sqrt(2)。即每两个工作之间的距离是一样的,显得更合理。

什么情况下不需要独热编码

1、如果特征是离散的,并且不用独热编码就可以很合理的计算出距离,就没必要进行独热编码。(比如,离散特征共有1000个取值,分成两组是400和600,两个小组之间的距离有合适的定义,组内距离也有合适的定义,就没必要独热编码)
2、有些并不是基于向量空间度量的算法,数值只是个类别符号,没有偏序关系,就不用进行独热编码。
3、如果原本的标签编码是有序的,就不必独热编码了,因为会丢失顺序信息。

参考文献:
https://blog.csdn.net/u013385925/article/details/80142310
https://blog.csdn.net/lanhaier0591/article/details/78702558
https://www.imooc.com/article/35900

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,117评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,328评论 1 293
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,839评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,007评论 0 206
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,384评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,629评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,880评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,593评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,313评论 1 243
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,575评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,066评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,392评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,052评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,082评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,844评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,662评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,575评论 2 270

推荐阅读更多精彩内容