深入分析 weak

写在前面

weak 的主要作用:用 weak 描述修饰或者所引用对象的计数器不会加一,并且会在引用的对象被释放的时候自动被设置为nil,很方便的避免野指针;也经常用于解决循环引用问题。

本篇文章主要是研究 weak 内部具体是怎么实现的。

编译过程

先从一个简单的例子开始

+ (void)test
{
    id obj = [NSObject new];
    __weak id weakObj = obj;
    if (weakObj)
    {
        
    }
}

通过 clang 命令,查看 IR 中间代码 clang -S -fobjc-arc -emit-llvm ARCObject.m -o ARCObject.txt

define internal void @"\01+[ARCObject test]"(i8*, i8*) #0 {
  %3 = alloca i8*, align 8
  %4 = alloca i8*, align 8
  %5 = alloca i8*, align 8
  %6 = alloca i8*, align 8
  store i8* %0, i8** %3, align 8
  store i8* %1, i8** %4, align 8
  %7 = load %struct._class_t*, %struct._class_t** @"OBJC_CLASSLIST_REFERENCES_$_", align 8
  %8 = bitcast %struct._class_t* %7 to i8*
  %9 = call i8* @objc_opt_new(i8* %8)
  %10 = bitcast i8* %9 to %0*
  %11 = bitcast %0* %10 to i8*
  store i8* %11, i8** %5, align 8
  %12 = load i8*, i8** %5, align 8
  %13 = call i8* @llvm.objc.initWeak(i8** %6, i8* %12) #1
  %14 = call i8* @llvm.objc.loadWeakRetained(i8** %6) #1
  call void @llvm.objc.release(i8* %14) #1, !clang.imprecise_release !9
  %15 = icmp ne i8* %14, null
  br i1 %15, label %16, label %17

16:                                               ; preds = %2
  br label %17

17:                                               ; preds = %16, %2
  call void @llvm.objc.destroyWeak(i8** %6) #1
  call void @llvm.objc.storeStrong(i8** %5, i8* null) #1
  ret void
}

整理之后

+ (void)test
{
    id obj = objc_msgSend(NSObject, @selector(new));
    id weakObj;
    objc_initWeak(&weakObj, obj);
    id tmp = objc_loadWeakRetained(&weakObj);
    if (tmp)
    {
        
    }
    objc_relase(tmp);
    objc_destroyWeak(&weakObj);
    objc_storeStrong(obj, nil);
}

底层实现

根据上面的例子,可以依次查看实现

// 初始化入口部分
id objc_initWeak(id *location, id newObj)
{
    if (!newObj) {
        *location = nil;
        return nil;
    }

    return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
        (location, (objc_object*)newObj);
}

// 主动移除指针
void objc_destroyWeak(id *location)
{
    (void)storeWeak<DoHaveOld, DontHaveNew, DontCrashIfDeallocating>
        (location, nil);
}

// 根据 newObj 的地址,获取一个全局 hash 表,然后把新的指针 *location 追加进去
template <HaveOld haveOld, HaveNew haveNew, CrashIfDeallocating crashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj)
{
    Class previouslyInitializedClass = nil;
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;

    // Acquire locks for old and new values.
    // Order by lock address to prevent lock ordering problems. 
    // Retry if the old value changes underneath us.
 retry:
    if (haveOld) {
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        oldTable = nil;
    }
    if (haveNew) {
        newTable = &SideTables()[newObj];
    } else {
        newTable = nil;
    }

    // 加锁防止多线程竞争
    SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);

    if (haveOld  &&  *location != oldObj) {
        SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
        goto retry;
    }

    // Prevent a deadlock between the weak reference machinery
    // and the +initialize machinery by ensuring that no 
    // weakly-referenced object has an un-+initialized isa.
    // 防止多线程的情况下,出现 +initialized 还没调用的情况
    if (haveNew  &&  newObj) {
        Class cls = newObj->getIsa();
        if (cls != previouslyInitializedClass  &&  
            !((objc_class *)cls)->isInitialized()) 
        {
            SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
            _class_initialize(_class_getNonMetaClass(cls, (id)newObj));

            // If this class is finished with +initialize then we're good.
            // If this class is still running +initialize on this thread 
            // (i.e. +initialize called storeWeak on an instance of itself)
            // then we may proceed but it will appear initializing and 
            // not yet initialized to the check above.
            // Instead set previouslyInitializedClass to recognize it on retry.
            previouslyInitializedClass = cls;

            goto retry;
        }
    }

    // Clean up old value, if any.
    // 如果是覆盖赋值的时候,把当前指针,从老对象对应的表中
    if (haveOld) {
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }

    // Assign new value, if any.
    // 把当前指针,添加到 newObj 对象对应的表中
    if (haveNew) {
        newObj = (objc_object *)
            weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                  crashIfDeallocating);
        // weak_register_no_lock returns nil if weak store should be rejected

        // Set is-weakly-referenced bit in refcount table.
        if (newObj  &&  !newObj->isTaggedPointer()) {
            newObj->setWeaklyReferenced_nolock();
        }

        // Do not set *location anywhere else. That would introduce a race.
        *location = (id)newObj;
    }
    else {
        // No new value. The storage is not changed.
    }
    
    SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);

    return (id)newObj;
}

// 获取 weak 指针,指向的对象
id objc_loadWeakRetained(id *location)
{
    id obj;
    id result;
    Class cls;

    SideTable *table;
    
 retry:
    // fixme std::atomic this load
    obj = *location;
    if (!obj) return nil;
    if (obj->isTaggedPointer()) return obj;
    
    table = &SideTables()[obj];
    
    table->lock();
    if (*location != obj) {
        table->unlock();
        goto retry;
    }
    
    result = obj;

    cls = obj->ISA();
    if (! cls->hasCustomRR()) {
        // Fast case. We know +initialize is complete because
        // default-RR can never be set before then.
        assert(cls->isInitialized());
        if (! obj->rootTryRetain()) {
            result = nil;
        }
    }
    else {
        // Slow case. We must check for +initialize and call it outside
        // the lock if necessary in order to avoid deadlocks.
        if (cls->isInitialized() || _thisThreadIsInitializingClass(cls)) {
            BOOL (*tryRetain)(id, SEL) = (BOOL(*)(id, SEL))
                class_getMethodImplementation(cls, SEL_retainWeakReference);
            if ((IMP)tryRetain == _objc_msgForward) {
                result = nil;
            }
            else if (! (*tryRetain)(obj, SEL_retainWeakReference)) {
                result = nil;
            }
        }
        else {
            table->unlock();
            _class_initialize(cls);
            goto retry;
        }
    }
        
    table->unlock();
    return result;
}
image

在不看具体实现细节的情况下,还是很好理解的,给一个 weak 指针赋值,其实就是把这个 weak 指针加到这个对象的 weak_table 中去。

实现细节

关于 SideTable

struct SideTable {
    // 自旋锁
    spinlock_t slock;
    // 引用计算表
    RefcountMap refcnts;
    // weak指针表
    weak_table_t weak_table;
    
    // 构造函数
    SideTable() {
        memset(&weak_table, 0, sizeof(weak_table));
    }
    
    // 析构函数
    ~SideTable() {
        _objc_fatal("Do not delete SideTable.");
    }

    void lock() { slock.lock(); }
    void unlock() { slock.unlock(); }
    void forceReset() { slock.forceReset(); }

    // Address-ordered lock discipline for a pair of side tables.
    // 模板函数
    template<HaveOld, HaveNew>
    static void lockTwo(SideTable *lock1, SideTable *lock2);
    template<HaveOld, HaveNew>
    static void unlockTwo(SideTable *lock1, SideTable *lock2);
};

// 对 weak_entry_t 列表的封装
struct weak_table_t {
    weak_entry_t *weak_entries;
    size_t    num_entries;
    uintptr_t mask;
    uintptr_t max_hash_displacement;
};

// 一个列表
typedef objc_object ** weak_referrer_t;
struct weak_entry_t {
    DisguisedPtr<objc_object> referent;
    union {
        struct {
            weak_referrer_t *referrers;
            // 位域为 2,uintptr_t 为无符号,所以 out_of_line_ness 最大值为二进制 11,十进制为 3
            uintptr_t        out_of_line_ness : 2;
            // 位域为 62,num_refs 的最大值为 2^62 - 1
            uintptr_t        num_refs : PTR_MINUS_2;
            uintptr_t        mask;
            uintptr_t        max_hash_displacement;
        };
        struct {
            // out_of_line_ness field is low bits of inline_referrers[1]
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    };

    bool out_of_line() {
        return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
    }

    weak_entry_t& operator=(const weak_entry_t& other) {
        memcpy(this, &other, sizeof(other));
        return *this;
    }

    weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
        : referent(newReferent)
    {
        inline_referrers[0] = newReferrer;
        for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
            inline_referrers[i] = nil;
        }
    }
};

添加函数 weak_register_no_lock

// 在 weak_table 中,添加 referent_id 对象的 weak 指针 referrer_id
id weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                        id *referrer_id, bool crashIfDeallocating)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    if (!referent  ||  referent->isTaggedPointer()) return referent_id;

    // 确保要新指向的对象是合法的
    bool deallocating;
    if (!referent->ISA()->hasCustomRR()) {
        deallocating = referent->rootIsDeallocating();
    }
    else {
        BOOL (*allowsWeakReference)(objc_object *, SEL) = 
            (BOOL(*)(objc_object *, SEL))
            object_getMethodImplementation((id)referent, 
                                           SEL_allowsWeakReference);
        if ((IMP)allowsWeakReference == _objc_msgForward) {
            return nil;
        }
        deallocating = !(*allowsWeakReference)(referent, SEL_allowsWeakReference);
    }

    if (deallocating) {
        return nil;
    }

    // 把 weak 指针添加至列表中
    weak_entry_t *entry;
    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        // 追加一个 weak 指针
        append_referrer(entry, referrer);
    } 
    else {
        // 初始化 new_entry
        weak_entry_t new_entry(referent, referrer);
        // 检测 weak_table 是否需要扩容
        // 扩容条件 weak_table->num_entries >= TABLE_SIZE(weak_table) * 3 / 4
        weak_grow_maybe(weak_table);
        // 初始化 new_entry,插入 weak_table 中
        weak_entry_insert(weak_table, &new_entry);
    }

    // Do not set *referrer. objc_storeWeak() requires that the 
    // value not change.

    return referent_id;
}

// 根据对象地址,寻找对应的 weak 指针列表
static weak_entry_t *weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
    weak_entry_t *weak_entries = weak_table->weak_entries;

    if (!weak_entries) return nil;

    size_t begin = hash_pointer(referent) & weak_table->mask;
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_table->weak_entries[index].referent != referent) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_table->weak_entries);
        hash_displacement++;
        if (hash_displacement > weak_table->max_hash_displacement) {
            return nil;
        }
    }
    
    return &weak_table->weak_entries[index];
}

// 把新的 weak 指针添加到 weak_entry_t 列表中
// 添加策略如下
// 1:对象的 weak 指针少于 4(WEAK_INLINE_COUNT) 个时候,添加至 inline_referrers 中
// 2:对象的 weak 指针多于 4 个的时候,则添加至 weak_referrer_t *referrers 列表中
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
    if (! entry->out_of_line()) {
        // weak 指针少于 4 个尝试放入 inline_referrers 中
        for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
            if (entry->inline_referrers[i] == nil) {
                entry->inline_referrers[i] = new_referrer;
                return;
            }
        }
        
        // weak 指针初次超过 4 个,把 inline_referrers 列表中的数据,移到 weak_referrer_t *referrers 列表中
        weak_referrer_t *new_referrers = (weak_referrer_t *)
            calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
        for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
            new_referrers[i] = entry->inline_referrers[i];
        }
        entry->referrers = new_referrers;
        entry->num_refs = WEAK_INLINE_COUNT;
        entry->out_of_line_ness = REFERRERS_OUT_OF_LINE; // 标记之后 entry->out_of_line() 为 true
        entry->mask = WEAK_INLINE_COUNT-1;
        entry->max_hash_displacement = 0;
    }

    // weak 指针超过 4 个之后的添加逻辑
    if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
        return grow_refs_and_insert(entry, new_referrer);
    }
    size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (entry->referrers[index] != nil) {
        hash_displacement++;
        index = (index+1) & entry->mask;
        if (index == begin) bad_weak_table(entry);
    }
    if (hash_displacement > entry->max_hash_displacement) {
        entry->max_hash_displacement = hash_displacement;
    }
    weak_referrer_t &ref = entry->referrers[index];
    ref = new_referrer;
    entry->num_refs++;
}

// weak_table 中添加 new_entry
static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
{
    weak_entry_t *weak_entries = weak_table->weak_entries;
    
    size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_entries[index].referent != nil) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_entries);
        hash_displacement++;
    }

    weak_entries[index] = *new_entry;
    weak_table->num_entries++;

    if (hash_displacement > weak_table->max_hash_displacement) {
        weak_table->max_hash_displacement = hash_displacement;
    }
}

移除函数 weak_unregister_no_lock

// 在 weak_table 表中,删除 referent_id 对象的 weak 指针 referrer_id
void weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, id *referrer_id)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    weak_entry_t *entry;

    if (!referent) return;

    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        remove_referrer(entry, referrer);
        bool empty = true;
        if (entry->out_of_line()  &&  entry->num_refs != 0) {
            empty = false;
        }
        else {
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i]) {
                    empty = false; 
                    break;
                }
            }
        }

        // 如果 referent_id 对象的 weak 指针已经全部释放,则把 entry 列表也删除
        if (empty) {
            weak_entry_remove(weak_table, entry);
        }
    }

    // Do not set *referrer = nil. objc_storeWeak() requires that the 
    // value not change.
}

// 从 entry 列表中删除 old_referrer 指针
static void remove_referrer(weak_entry_t *entry, objc_object **old_referrer)
{
    if (! entry->out_of_line()) {
        for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
            if (entry->inline_referrers[i] == old_referrer) {
                entry->inline_referrers[i] = nil;
                return;
            }
        }
        objc_weak_error();
        return;
    }

    size_t begin = w_hash_pointer(old_referrer) & (entry->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (entry->referrers[index] != old_referrer) {
        index = (index+1) & entry->mask;
        if (index == begin) bad_weak_table(entry);
        hash_displacement++;
        if (hash_displacement > entry->max_hash_displacement) {
            objc_weak_error();
            return;
        }
    }
    entry->referrers[index] = nil;
    entry->num_refs--;
}

static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
{
    // remove entry
    if (entry->out_of_line()) free(entry->referrers);
    bzero(entry, sizeof(*entry));

    weak_table->num_entries--;

    // 检测 weak_table 是否可以缩容
    // 缩容条件 TABLE_SIZE(weak_table) >= 1024  && TABLE_SIZE(weak_table) / 16 >= weak_table->num_entries
    weak_compact_maybe(weak_table);
}

对象销毁,weak指针设置为nil的过程

可以通过下面代码来分析

@implementation ARCObject

- (void)dealloc
{
    NSLog(@"done");
}

+ (void)test
{
    static __weak id weakObj;
    {
        id obj = [ARCObject new];
        weakObj = obj;
    }
    NSLog(@"%@", weakObj);
}

@end

根据上面的分析,很容易可以想到会调用 weak_entry_remove 函数,通过断点来观察堆栈信息

image

dealloc 函数之后,开始清除对象的 weak 指针。接下来继续看源码

void _objc_rootDealloc(id obj)
{
    obj->rootDealloc();
}

inline void objc_object::rootDealloc()
{
    if (isTaggedPointer()) return;  // fixme necessary?

    if (fastpath(isa.nonpointer  &&  
                 !isa.weakly_referenced  &&  
                 !isa.has_assoc  &&  
                 !isa.has_cxx_dtor  &&  
                 !isa.has_sidetable_rc)) 
    {
        free(this);
    } else {
        object_dispose((id)this);
    }
}

id object_dispose(id obj)
{
    if (!obj) return nil;

    objc_destructInstance(obj);    
    free(obj);

    return nil;
}

void *objc_destructInstance(id obj) 
{
    if (obj) {
        // Read all of the flags at once for performance.
        bool cxx = obj->hasCxxDtor();
        bool assoc = obj->hasAssociatedObjects();

        // This order is important.
        if (cxx) object_cxxDestruct(obj);
        // 清除关联对象
        if (assoc) _object_remove_assocations(obj);
        // 清除 weak 指针
        obj->clearDeallocating();
    }

    return obj;
}

inline void objc_object::clearDeallocating()
{
    // nonpointer 表示是否对 isa 指针开启指针优化,1 表示优化,0 表示未优化
    // arm64架构isa占64位,苹果为了优化性能,存储类对象地址只用了33位,剩下的位用来存储一些其它信息
    if (slowpath(!isa.nonpointer)) {
        // Slow path for raw pointer isa.
        sidetable_clearDeallocating();
    }
    else if (slowpath(isa.weakly_referenced  ||  isa.has_sidetable_rc)) {
        // Slow path for non-pointer isa with weak refs and/or side table data.
        clearDeallocating_slow();
    }
}

NEVER_INLINE void objc_object::clearDeallocating_slow()
{
    SideTable& table = SideTables()[this];
    table.lock();
    if (isa.weakly_referenced) {
        weak_clear_no_lock(&table.weak_table, (id)this);
    }
    if (isa.has_sidetable_rc) {
        table.refcnts.erase(this);
    }
    table.unlock();
}

通过上面的中转,移除的关键函数如下

void weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
{
    objc_object *referent = (objc_object *)referent_id;

    weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
    if (entry == nil) {
        /// XXX shouldn't happen, but does with mismatched CF/objc
        //printf("XXX no entry for clear deallocating %p\n", referent);
        return;
    }

    // zero out references
    weak_referrer_t *referrers;
    size_t count;
    
    if (entry->out_of_line()) {
        referrers = entry->referrers;
        count = TABLE_SIZE(entry);
    } 
    else {
        referrers = entry->inline_referrers;
        count = WEAK_INLINE_COUNT;
    }
    
    // 把 referent_id 对象的全部 weak 指针,指向的值置为 nil
    for (size_t i = 0; i < count; ++i) {
        objc_object **referrer = referrers[i];
        if (referrer) {
            if (*referrer == referent) {
                *referrer = nil;
            }
            else if (*referrer) {
                objc_weak_error();
            }
        }
    }
    
    weak_entry_remove(weak_table, entry);
}

思考

Q:SideTable 是通过对象地址获取的,也就是说,每个对象都对应一个 SideTable,那为什么 weak_table_t 里面又要重复的根据对象地址获取 weak_entry_t 列表?

A:目的是解决 hash 冲突。

先看 SideTable 的获取方式

SideTable *newTable = &SideTables()[newObj];
// reinterpret_cast,是 C++ 里的强制类型转换符
// 使用格式:reinterpret_cast<type-id> (expression)
// 它可以把一个指针转换成一个整数,也可以把一个整数转换成一个指针
// 先把一个指针转换成一个整数,再把该整数转换成原类型的指针,还可以得到原先的指针值
static StripedMap<SideTable>& SideTables() {
    return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf);
}
enum { CacheLineSize = 64 };

template<typename T>
class StripedMap {
    enum { StripeCount = 64 };

    struct PaddedT {
        T value alignas(CacheLineSize);
    };

    PaddedT array[StripeCount];

    static unsigned int indexForPointer(const void *p) {
        uintptr_t addr = reinterpret_cast<uintptr_t>(p);
        return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
    }

 public:
    T& operator[] (const void *p) { 
        return array[indexForPointer(p)].value; 
    }
    const T& operator[] (const void *p) const { 
        return const_cast<StripedMap<T>>(this)[p]; 
    }

    //...
};

通过 indexForPointer 这个函数可以知道,每个对象的地址 addr,都会映射为一个小于 StripeCount 值的索引值,这里就会出现一个问题,有可能多个对象的 addr 映射成同一个索引值

也就是说 SideTable *newTable = &SideTables()[newObj]; 不是一一对应的,会出现多个 newObj 对应一个 newTable

有了上面的基础,接下来,继续看根据对象地址在 weak_table_t 中寻找 weak_entry_t,重点看 weak_entry_insertweak_entry_for_referent 函数

static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
{
    weak_entry_t *weak_entries = weak_table->weak_entries;

    // 根据对象地址 hash 一个整数,同时设置为起始位置,既然是 hash 自然也有可能出现冲突
    // hash_displacement 就是来记录,多个对象地址 hash 到同一个值的数量
    size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_entries[index].referent != nil) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_entries);
        hash_displacement++;
    }

    weak_entries[index] = *new_entry;
    weak_table->num_entries++;

    if (hash_displacement > weak_table->max_hash_displacement) {
        weak_table->max_hash_displacement = hash_displacement;
    }
}

static weak_entry_t *weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
    weak_entry_t *weak_entries = weak_table->weak_entries;

    if (!weak_entries) return nil;

    // 读取的时候,也采用插入时的 hash 机制
    size_t begin = hash_pointer(referent) & weak_table->mask;
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_table->weak_entries[index].referent != referent) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_table->weak_entries);
        hash_displacement++;
        if (hash_displacement > weak_table->max_hash_displacement) {
            return nil;
        }
    }
    
    return &weak_table->weak_entries[index];
}

// 根据对象地址 hash 一个整数
static inline uintptr_t hash_pointer(objc_object *key) {
    return ptr_hash((uintptr_t)key);
}

static inline uint32_t ptr_hash(uint64_t key) {
    key ^= key >> 4;
    key *= 0x8a970be7488fda55;
    key ^= __builtin_bswap64(key);
    return (uint32_t)key;
}

小结

  1. 通过对象地址 hash 得到的 SideTable,可能出现多个对象对应同一个 SideTable
  2. SideTable->weak_entries 中寻找 weak_entry_t 时,也是通过对象地址 hash 得到在 weak_entries 列表中的起始索引值,因为有可能存在多个对象,所以也有可能出现多个起始值一样的情况,max_hash_displacement 为 hash 最大冲突值。

参考资料

objc4-750.1

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 161,601评论 4 369
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 68,367评论 1 305
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 111,249评论 0 254
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,539评论 0 217
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,967评论 3 295
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,929评论 1 224
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 32,098评论 2 317
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,825评论 0 207
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,609评论 1 249
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,796评论 2 253
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,282评论 1 265
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,603评论 3 261
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,277评论 3 242
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,159评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,959评论 0 201
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 36,079评论 2 285
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,874评论 2 277

推荐阅读更多精彩内容

  • 我们经常写delegate ,修饰有weak指针,而不用assign,这是因为用weak指针不会,在delegat...
    充满活力的早晨阅读 823评论 0 10
  • SideTables SideTables 是全局表,管理着对象的引用计数和weak引用指针,每个对象在此表中都有...
    Leafmure阅读 621评论 0 0
  • 面试的时候,经常会问这个,之前面试回答的很简单,就是:底层有个hash表专门来维护存储weak指针,当指向的对象的...
    huxinwen阅读 1,624评论 1 6
  • 在iOS开发过程中,会经常使用到一个修饰词weak,使用场景大家都比较清晰,避免出现对象之间的强强引用而造成对象不...
    风紧扯呼阅读 427评论 0 2
  • weak功能就不多说了,它的实现原理就从一段代码开始吧。一个OC变量的默认属性都是strong,所以我们如果需要w...
    随风流逝阅读 2,297评论 0 3