机器学习实战-使用Apriori算法进行关联分析

从大规模数据集中寻找物品间的隐含关系被称作关联分析或者关联学习。本章将主要介绍Apriori算法来解决问题。

Apriori算法
优点:易编码实现
缺点:在大数据集上可能较慢
适用数据类型:数值型或者标称型数据

关联分析是一种在大规模数据集中寻找有趣关系的任务。这些关系可以有两种形式:频繁项集或者关联规则。频繁项集(frequent item sets)是经常出现在一块的物品的集合,关联规则(association rules)暗示两种物品之间可能存在很强的关系。
一个项集的支持度(support)被定义为数据集中包含该数据集的记录所占的比例。
可信度和置信度(confidence)是针对一条诸如{尿布}→{葡萄酒}的关联规则来定义的。
支持度和可信度是用来量化关联分析是否成功的方法。下一节会详细分析这种情况并讨论Apriori原理,该原理会减少关联规则学习时所需的计算量。
Apriori原理是说如果某个项技术频繁的,那么他的所有子集也是频繁的。这个原理直观上并没有什么帮助,但是如果反过来看就有用了,也就是说一个项集非频繁集,那么他的所有超集也是非频繁的。
下面会创建一个用于创建初始集合的函数,也会创建一个通过数据集以寻找交易记录子集的函数,伪代码大致如下:

对数据集中的每条交易记录tran
对每个候选项集can
  检查一下can是否是tran的子集:
  如果是,则增加can的计数值
  对每个候选项集:
  如果其支持度不低于最小值,则保留该项集,返回所有频繁项集列表
from numpy import *

def loadDataSet():
    return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]

def createC1(dataSet):#构建集合C1,存放大小为1的所有候选键的集合
    C1 = []#空列表
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
                
    C1.sort()
    return map(frozenset, C1)#构建不变集合,能作为字典中的key

def scanD(D, Ck, minSupport):#数据集,候选项集Ck,最小支持度
    ssCnt = {}#空字典
    for tid in D:
        for can in Ck:
            if can.issubset(tid):#s.issubset(t) 如果s是t的子集,则返回True,否则返回False 
                if not ssCnt.has_key(can): ssCnt[can]=1#has_key:如果键在字典里返回true,否则返回false。
                else: ssCnt[can] += 1
    numItems = float(len(D))
    retList = []#满足最小支持度的集合
    supportData = {}#最频繁项集的支持度
    for key in ssCnt:
        support = ssCnt[key]/numItems
        if support >= minSupport:#不满足最小支持度要求的不会输出
            retList.insert(0,key)
        supportData[key] = support
    return retList, supportData

下面看看实际运行效果:

In [20]: import apriori
    ...: dataSet = apriori.loadDataSet()
    ...: dataSet
    ...: 
Out[20]: [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]

In [21]: C1 = apriori.createC1(dataSet)#构建第一个候选集
    ...: C1
    ...: 
Out[21]: 
[frozenset({1}),
 frozenset({2}),
 frozenset({3}),
 frozenset({4}),
 frozenset({5})]

In [22]: D = map(set,dataSet)
    ...: D
    ...: 
Out[22]: [{1, 3, 4}, {2, 3, 5}, {1, 2, 3, 5}, {2, 5}]

In [23]: L1,suppData0 = apriori.scanD(D,C1,0.5)
    ...: L1
    ...: 
Out[23]: [frozenset({1}), frozenset({3}), frozenset({2}), frozenset({5})]

上面4个项集构成了L1列表,该列表中的每个物品至少出现在50%以上的记录中。
下面开始组织完整的Apriori算法,伪代码如下:

当集合中项的个数大于0时
  构建一个k个项组成的候选项集的列表
  检查数据以确认每个项集都是频繁的
  保留频繁项集并构建k+1项组成的候选项集的列表

既然可以过滤集合,那么就能构建完整的Apriori算法了。

def aprioriGen(Lk, k): #创建候选集Ck,Lk频繁项集列表Lk与项集元素个数k
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk): 
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
            L1.sort(); L2.sort()
            if L1==L2: #如果前k-2个元素相等
                retList.append(Lk[i] | Lk[j]) 
    return retList

def apriori(dataSet, minSupport = 0.5):
    C1 = createC1(dataSet)
    D = map(set, dataSet)
    L1, supportData = scanD(D, C1, minSupport)
    L = [L1]
    k = 2
    while (len(L[k-2]) > 0):
        Ck = aprioriGen(L[k-2], k)
        Lk, supK = scanD(D, Ck, minSupport)
        supportData.update(supK)#更新字典
        L.append(Lk)
        k += 1
    return L, supportData
下面来看看实际效果:
In [27]: L,suppData = apriori.apriori(dataSet)
    ...: L
    ...: 
Out[27]: 
[[frozenset({1}), frozenset({3}), frozenset({2}), frozenset({5})],
 [frozenset({1, 3}), frozenset({2, 5}), frozenset({2, 3}), frozenset({3, 5})],
 [frozenset({2, 3, 5})],
 []]

In [28]: L[0]
Out[28]: [frozenset({1}), frozenset({3}), frozenset({2}), frozenset({5})]

In [29]: L[1]
Out[29]: [frozenset({1, 3}), frozenset({2, 5}), frozenset({2, 3}), frozenset({3, 5})]

In [30]: L[2]
Out[30]: [frozenset({2, 3, 5})]

In [31]: L[3]
Out[31]: []

每个项集都是在函数apriori()中调用函数aprioriGen()来生成的,下面看看aprioriGen()函数的工作流程:

apriori.aprioriGen(L[0],2)
Out[32]: 
[frozenset({1, 3}),
 frozenset({1, 2}),
 frozenset({1, 5}),
 frozenset({2, 3}),
 frozenset({3, 5}),
 frozenset({2, 5})]

这里的6个集合是候选项集Ck中的元素。其中4个在L[1]中,剩下2个集合被函数scanD()过滤掉。
下面尝试70%的支持度:

In [33]: L,supportData = apriori.apriori(dataSet,minSupport=0.7)

In [34]: L
Out[34]: [[frozenset({3}), frozenset({2}), frozenset({5})], [frozenset({2, 5})], []]

可以利用关联规则来减少需要测试的规则数目。下面看看实际效果:

def generateRules(L, supportData, minConf=0.7):  #频繁项集列表,包含哪些频繁项集支持数据的字典,最小可信度阈值
    bigRuleList = []
    for i in range(1, len(L)):#遍历L中每一个频繁项集
        for freqSet in L[i]:
            H1 = [frozenset([item]) for item in freqSet]
            if (i > 1):
                rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
            else:
                calcConf(freqSet, H1, supportData, bigRuleList, minConf)
    return bigRuleList   #包含可信度的规则列表      

def calcConf(freqSet, H, supportData, brl, minConf=0.7):#对规则进行评估
    prunedH = [] 
    for conseq in H:#遍历,计算可信度
        conf = supportData[freqSet]/supportData[freqSet-conseq]
        if conf >= minConf: 
            print freqSet-conseq,'-->',conseq,'conf:',conf
            brl.append((freqSet-conseq, conseq, conf))#填充bigRuleList
            prunedH.append(conseq)
    return prunedH

def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):#从最初的项集生成候选规则
    m = len(H[0])
    if (len(freqSet) > (m + 1)): #是否够移除m大小的子集
        Hmp1 = aprioriGen(H, m+1)
        Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
        if (len(Hmp1) > 1):   
            rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)

下面我们来尝试生成一个最小支持度为0.5的频繁项集:

In [38]: L,suppData = apriori.apriori(dataSet,minSupport = 0.5)
    ...: rules = apriori.generateRules(L,suppData, minConf=0.7)
    ...: rules
    ...: 
frozenset([1]) --> frozenset([3]) conf: 1.0
frozenset([5]) --> frozenset([2]) conf: 1.0
frozenset([2]) --> frozenset([5]) conf: 1.0

给出了三条规则:{1}→{3}、{5}→{2}和{2}→{5}。可以看到,1和3的规则不行,下面降低可信度阈值之后看一下结果:

In [39]: rules = apriori.generateRules(L,suppData, minConf=0.5)
    ...: rules
    ...: 
frozenset([3]) --> frozenset([1]) conf: 0.666666666667
frozenset([1]) --> frozenset([3]) conf: 1.0
frozenset([5]) --> frozenset([2]) conf: 1.0
frozenset([2]) --> frozenset([5]) conf: 1.0
frozenset([3]) --> frozenset([2]) conf: 0.666666666667
frozenset([2]) --> frozenset([3]) conf: 0.666666666667
frozenset([5]) --> frozenset([3]) conf: 0.666666666667
frozenset([3]) --> frozenset([5]) conf: 0.666666666667
frozenset([5]) --> frozenset([2, 3]) conf: 0.666666666667
frozenset([3]) --> frozenset([2, 5]) conf: 0.666666666667
frozenset([2]) --> frozenset([3, 5]) conf: 0.666666666667

一旦降低可信度阈值,就可以获得更多的规则。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 160,026评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,655评论 1 296
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,726评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,204评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,558评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,731评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,944评论 2 314
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,698评论 0 203
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,438评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,633评论 2 247
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,125评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,444评论 3 255
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,137评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,103评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,888评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,772评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,669评论 2 271

推荐阅读更多精彩内容