三、CSCA《cross-scale cost aggregation for stereo matching》

来源:http://blog.csdn.net/wsj998689aa/article/details/44411215, 作者:迷雾forest

1.立体匹配概念

  • 立体匹配的意思是基于同一场景得到的多张二维图,还原场景的三维信息,一般采用的图像是双目图像。

  • 目前,立体匹配领域,主要有两个评测网站,一个是KITTI(http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo),另一个是middlebury(http://vision.middlebury.edu/stereo/),两个网站上的算法都交叉,但是又不完全一样,相对来说,KITTI更好一点,对算法的性能评测更好,虽然时间测算的并不准确

  • 下面说说立体匹配最基本的步骤:
    1)代价计算。计算左图一个像素和右图一个像素之间的代价。
    2)代价聚合。一般基于点之间的匹配很容易受噪声的影响,往往真实匹配的像素的代价并不是最低。所以有必要在点的周围建立一个window,让像素块和像素块之间进行比较,这样肯定靠谱些。代价聚合往往是局部算法或者半全局算法才会使用,全局算法抛弃了window,采用基于全图信息的方式建立能量函数。
    3)深度赋值。这一步可以区分局部算法与全局算法,局部算法直接优化代价聚合模型。而全局算法,要建立一个能量函数,能量函数的数据项往往就是代价聚合公式,例如DoubleBP。输出的是一个粗略的视差图。
    4)结果优化。对上一步得到的粗估计的视差图进行精确计算,策略有很多,例如plane fitting,BP,动态规划等。这里不再熬述。

根据我的理解,可以看作为一种全局算法框架,通过融合现有的局部算法,大幅的提高了算法效果。

2.论文贡献

  • 文献《Cross-Scale Cost Aggregation for Stereo Matching》有三大贡献,第一,设计了一种一般化的代价聚合模型,可将现有算法作为其特例。第二,考虑到了多尺度交互(multi-scaleinteraction),形式化为正则化项,应用于代价聚合(costaggregation)。第三,提出一种框架,可以融合现有多种立体匹配算法。

  • 本文一直强调利用了不同尺度图像“间”的信息,不同于一般的立体匹配算法,只采用了同样尺度下,图像的“内”部结构信息,CSCA利用了多尺度信息,多尺度从何而来?其实说到底,就是简单的对图像进行高斯下采样,得到的多幅成对图像(一般是5副),就代表了多尺度信息。为什么作者会这么提,作者也是从生物学的角度来启发,他说人类就是这么一个由粗到精的观察习惯(coarse-to-line)。生物学好奇妙!

  • 该文献生成的稠密的视差图,基本方法也是逐像素的(pixelwise),分别对每个像素计算视差值,并没有采用惯用的图像分割预处理手段,如此看来运算量还是比较可观的。

3.算法流程

  • 流程图:
  • 其实,这篇文章的论述是很清晰的,上图是我根据自己的理解,画的一份算法流程图,下面我根据这份流程图,对文章脉络进行说明,对关键的公式进行解释。
  1. 对左右两幅图像进行高斯下采样,得到多尺度图像。
  2. 计算匹配代价,这个是基于当前像素点对的,通常代价计算这一步并不重要,主要方法有CEN,CG,GRD等几种,论文中给出了GRD,公式如下所示:
  • 这个模型,神奇的地方在于,可以融合现有的多种代价聚合算法,比如the-state-of-art的NL,ST,BF,GF等,但是很遗憾,文章没有给出明确的推导公式,用以说明为什么上述代价聚合算法可以作为上述模型的特例,只有一大段的文字描述,缺乏有力的说服力。

  • 解释一下这个一般化模型,它的目的是求解当前像素i的最小匹配代价,l为视差未知变量,j是像素i的邻域内的其他像素,K(i,j)就是像素i,j的相似度,这个相似度可以基于空间信息,也可以基于梯度,颜色信息,不同的核函数,就可以等价于不同的代价聚合算法。从另外一个角度解释一下,为何要z-C(j,l)?我认为这是基于两点假设,一个是左图右图匹配的越好,那么整体代价就越小。另一个是统一邻域内的像素深度值往往差不多。

  • 上述模型的求解很容易,直接对z求偏导即可,形式如下:
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,219评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,363评论 1 293
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,933评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,020评论 0 206
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,400评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,640评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,896评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,597评论 0 199
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,327评论 1 244
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,581评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,072评论 1 261
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,399评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,054评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,083评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,849评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,672评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,585评论 2 270

推荐阅读更多精彩内容