Java多线程7 Lock

Java多线程目录

1 synchronized的缺陷

synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

2)线程执行发生异常,此时JVM会让线程自动释放锁。

那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

但是采用synchronized关键字来实现同步的话,就会导致一个问题:

如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

2 Lock

2.1 ReentrantLock
public class LockTest {
    public static void main(String[] args) {

        new LockTest().init();
    }

    private void init() {
        final Outputer outputer = new Outputer();

        new Thread(new Runnable() {
            @Override
            public void run() {

                while (true) {
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    outputer.output("kpioneer");

                }
            }
        }).start();


        new Thread(new Runnable() {
            @Override
            public void run() {

                while (true) {
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    outputer.output("Jack");

                }
            }
        }).start();
    }

    static class Outputer {
        
        Lock lock = new ReentrantLock();

        public void output(String name) {
            int len = name.length();
            lock.lock();
            /**
             *
             *不管程序运行是否异常都要释放锁
             * 否则再也进入不到改页面
             */
            try {
                for (int i = 0; i < len; i++) {
                    System.out.print(name.charAt(i));
                }
                System.out.println();
            } finally {
                lock.unlock();
            }
        }
    }
}
kpioneer
Jack
kpioneer
Jack
kpioneer
Jack
Jack
kpioneer
Jack
kpioneer
省略...
2.2 ReentrantReadWriteLock

实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁。在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源;但是如果一个线程想去写这些共享资源,就不应该允许其他线程对该资源进行读和写的操作了。

针对这种场景,JAVA的并发包提供了读写锁ReentrantReadWriteLock,它表示两个锁,一个是读操作相关的锁,称为共享锁;一个是写相关的锁,称为排他锁,描述如下:

线程进入读锁的前提条件:

没有其他线程的写锁,

没有写请求或者有写请求,但调用线程和持有锁的线程是同一个。

线程进入写锁的前提条件:

没有其他线程的读锁

没有其他线程的写锁

而读写锁有以下三个重要的特性:

(1)公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。

(2)重进入:读锁和写锁都支持线程重进入。

(3)锁降级:遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级成为读锁。

public class ReadWriteLockTest {
    public static void main(String[] args) {

        final Queue q = new Queue();

        for (int i = 0; i < 3; i++) {

            new Thread() {
                @Override
                public void run() {

                    while (true) {
                        q.get();
                    }
                }
            }.start();

            new Thread() {
                @Override
                public void run() {
                    while (true) {
                        q.put(new Random().nextInt(10000));
                    }
                }
            }.start();
        }
    }
}

class Queue {

    //共享数据,只能有一个线程能写该数据,但可以有多个线程同时读该数据。
    ReadWriteLock rwl = new ReentrantReadWriteLock();
    private Object data = null;//共享数据,只能有一个线程能写数据,但可以有多个线程读该数据

    public void get() {
        //上读锁,其他线程只能读不能写
        rwl.readLock().lock();
        try {

            System.out.println(Thread.currentThread().getName() + " be ready to read data!");
            Thread.sleep((long) (Math.random() * 1000));
            System.out.println(Thread.currentThread().getName() + " have read data :" + data);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            rwl.readLock().unlock();
        }
    }

    public void put(Object data) {
        //上写锁,不允许其他线程读也不允许写
        rwl.writeLock().lock();

        try {
            System.out.println(Thread.currentThread().getName() + " be ready to write data!");

            Thread.sleep((long) (Math.random() * 1000));

            this.data = data;
            System.out.println(Thread.currentThread().getName() + " have write data: " + data);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            rwl.writeLock().unlock();
        }
    }
}
Thread-0 be ready to read data!
Thread-2 be ready to read data!
Thread-2 have read data :null
Thread-0 have read data :null
Thread-1 be ready to write data!
Thread-1 have write data: 4664
Thread-1 be ready to write data!
Thread-1 have write data: 1849
Thread-3 be ready to write data!
Thread-3 have write data: 75
Thread-3 be ready to write data!
Thread-3 have write data: 8222
Thread-3 be ready to write data!
Thread-3 have write data: 3056
Thread-3 be ready to write data!
Thread-3 have write data: 6114
Thread-3 be ready to write data!
Thread-3 have write data: 6376
省略...

3 锁的相关概念介绍

在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。

3.1 可重入锁

如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

看下面这段代码就明白了:

class MyClass {
    public synchronized void method1() {
        method2();
    }
     
    public synchronized void method2() {
         
    }
}

上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

3.2 可中断锁

可中断锁:顾名思义,就是可以相应中断的锁。
  在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
  如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。
  在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

3.3 公平锁

公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

看一下这2个类的源代码就清楚了:

   /**
     * Base of synchronization control for this lock. Subclassed
     * into fair and nonfair versions below. Uses AQS state to
     * represent the number of holds on the lock.
     */
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;

        /**
         * Performs {@link Lock#lock}. The main reason for subclassing
         * is to allow fast path for nonfair version.
         */
        abstract void lock();

        /**
         * Performs non-fair tryLock.  tryAcquire is implemented in
         * subclasses, but both need nonfair try for trylock method.
         */
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

        protected final boolean isHeldExclusively() {
            // While we must in general read state before owner,
            // we don't need to do so to check if current thread is owner
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final ConditionObject newCondition() {
            return new ConditionObject();
        }

        // Methods relayed from outer class

        final Thread getOwner() {
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }

        final int getHoldCount() {
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked() {
            return getState() != 0;
        }

        /**
         * Reconstitutes the instance from a stream (that is, deserializes it).
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }
    /**
     * Sync object for non-fair locks
     */
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

    /**
     * Sync object for fair locks
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;

        final void lock() {
            acquire(1);
        }

        /**
         * Fair version of tryAcquire.  Don't grant access unless
         * recursive call or no waiters or is first.
         */
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

另外在ReentrantLock类中定义了很多方法,比如:

isFair() //判断锁是否是公平锁

isLocked() //判断锁是否被任何线程获取了

isHeldByCurrentThread() //判断锁是否被当前线程获取了

hasQueuedThreads() //判断是否有线程在等待该锁

在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

3.4 读写锁

读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

可以通过readLock()获取读锁,通过writeLock()获取写锁。

public class CacheDemo {
    private Map<String, Object> cache = new HashMap<>();
    private ReadWriteLock readWriteLock = new ReentrantReadWriteLock();

    public static void main(String[] args) {


    }

    public Object getData(String key) {

        Object value = null;
        //首先开启读锁,从缓存中去取
        readWriteLock.readLock().lock();
        try {
            value = cache.get(key);
            //如果缓存中没有释放读锁,上写锁
            if (value == null) {
                //对应queryDB()
                readWriteLock.readLock().unlock();
                //读锁必须unlock之后才能获取写锁
                readWriteLock.writeLock().lock();
                try {
                    //对应queryDB()
                    value = queryDB();
                } finally {
                    //释放写锁
                    readWriteLock.writeLock().unlock();
                }
                //然后再上读锁
                readWriteLock.readLock().lock();
            }
        } finally {
            //最后释放读锁
            readWriteLock.readLock().unlock();
        }
        return value;

    }

    public Object queryDB() {
        return "aaaa";
    }
}
特别感谢:

ReentrantReadWriteLock读写锁详解
Lock和synchronized的区别和使用

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 162,547评论 4 374
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 68,787评论 2 308
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 112,175评论 0 254
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,752评论 0 223
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 53,169评论 3 297
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 41,056评论 1 226
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 32,195评论 2 321
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,980评论 0 214
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,724评论 1 250
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,872评论 2 254
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,344评论 1 265
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,667评论 3 264
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,379评论 3 245
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,202评论 0 9
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,992评论 0 201
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 36,189评论 2 286
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,987评论 2 279

推荐阅读更多精彩内容