深入理解Java中的引用(三)——DirectByteBuffer与ThreadLoal的垃圾回收

深入理解Java中的引用(三)——DirectByteBuffer与ThreadLoal的垃圾回收

上一篇文章介绍了关于Java中的四种引用类型。本文将介绍这四种类型中的弱引用与虚引用在DirectByteBuffer与ThreadLocal中的应用。

DirectByteBuffer

DirectByteBuffer是java.nio包下面的一个类,该类可以在JVM堆外分配内区域。查看DirectByteBuffer构造函数的源码:

    DirectByteBuffer(int cap) {                   // package-private
       .....
        try {
            base = unsafe.allocateMemory(size);
        } catch (OutOfMemoryError x) {
            Bits.unreserveMemory(size, cap);
            throw x;
        }
        unsafe.setMemory(base, size, (byte) 0);
        if (pa && (base % ps != 0)) {
            // Round up to page boundary
            address = base + ps - (base & (ps - 1));
        } else {
            address = base;
        }
        cleaner = Cleaner.create(this, new Deallocator(base, size, cap));
        att = null;

    }

通过源码可以看到该类通过unsafe.allocateMemory来分配内存的,而allocateMemory是一个native方法,通过把堆外内存的地址保存在address变量中,这样JVM就可以通过该变量操作堆外内存了。
由于DirectByteBuffer是一块堆外内存,JVM GC的时候如何管理他呢?在构造函数的下方可以看到,DirectByteBuffer会创建一个Cleaner实例,而
Cleaner是PhantomReference的子类,Cleaner就起到了跟踪DirectByteBuffer的垃圾回收过程的作用。在第一篇文章中说到,当Reference状态从pending到enqueue状态时,ReferenceHandler线程将其放入到队列中,在放入队列之前会调用Clean类里的clean()方法

       ReferenceHandler(ThreadGroup g, String name) {
            super(g, name);
        }

        public void run() {
            for (;;) {
                Reference<Object> r;
                synchronized (lock) {
                .....
                if (r instanceof Cleaner) {
                    ((Cleaner)r).clean();
                    continue;
                }

                ReferenceQueue<Object> q = r.queue;
                if (q != ReferenceQueue.NULL) q.enqueue(r);
            }
        }

深入clean方法可以看到,首先调用remove方法把自己从链表中删除,这样Cleaner就是一个无指向的对象,坐等被GC回收。然后是调用thunk.run()方法。

    public void clean() {
        if (remove(this)) {
           .....
                this.thunk.run();
           .....
        }
    }

继续深入到run方法中,可以看到是用unsafe.freeMemory方法释放堆外内存

        public void run() {
            if (address == 0) {
                // Paranoia
                return;
            }
            unsafe.freeMemory(address);
            address = 0;
            Bits.unreserveMemory(size, capacity);
        }

好了,DirectByteBuffer如何利用虚引用进行垃圾状态的回收先讲到这里,至于为什么要用堆外内存,他的特点和好处,大家可以参考这边文章

ThreadLocal

看完了虚引用的应用,再看一个弱引用在ThreadLocal中的应用。
如下是ThreadLocal的get方法的源码。ThreadLocal通过ThreadLocalMap来维护线程与实例对象的映射关系。

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

继续深入到ThreadLocalMap的源码中。ThreadLocalMap通过静态内部类Entry来维护键值关系,Entry继承自WeakReference, Entry中的key是ThreadLocal实例,value就是你想在当前线程中保存的变量。

    static class ThreadLocalMap {
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }
        ...

通过上述源代码的分析可以得到下图 (实线代表强引用,虚线代表弱引用):


image.png

在面试的时候,面试官经常会问ThreadLocal是否存在内存泄漏的问题。从上面的图看以看到,key存在一个弱引用,当ThreadLocal的实例设置成null以后,由于没有强引用指向该实例对象,ThreadLocal实例会被回收,避免了ThreadLocal对象无法被回收的问题。但是整体Entry还是存在强引用的,所以不能被回收造成了内存泄漏的问题。
那么如何防止ThreadLocal的内存泄漏的问题呢?
有两种方法。
1、当前线程退出。Entry的强引用链断开,Entry就能被GC回收。这种方法不适合使用线程池的情况。因为线程结束是不会被销毁的,这种情况下就出现了内存泄漏问题。
2、为了减少内存泄漏的可能性,ThreadLocal会在setget方法中对value做处理。下面以set函数为例。

private void set(ThreadLocal<?> key, Object value) {
  Entry[] tab = table;
  int len = tab.length;
  int i = key.threadLocalHashCode & (len-1);
  for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) {
    ThreadLocal<?> k = e.get();
    if (k == key) {
      e.value = value;
      return;
    }
    if (k == null) {
      replaceStaleEntry(key, value, i);
      return;
    }
  }
  tab[i] = new Entry(key, value);
  int sz = ++size;
  if (!cleanSomeSlots(i, sz) && sz >= threshold)
    rehash();
}

如果k==null, 那么会执行replaceStaleEntry方法将Entry的值设置为null,从而使该Entry变成可回收,通过这种方式防止内存泄漏。具体Treadlocal的使用场景可以参考这篇文章

总结

本文以DirectByteBuffer和ThreadLocal为例,通过源码分析解释了虚引用与弱引用的使用场景。可以得出这样的结论:虚引用可以跟踪对象垃圾回收的情况,弱引用不影响对象的垃圾回收,你可以通过弱引用随时拿到对象。这也印证了上一篇文章介绍的内容。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,117评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,328评论 1 293
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,839评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,007评论 0 206
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,384评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,629评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,880评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,593评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,313评论 1 243
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,575评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,066评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,392评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,052评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,082评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,844评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,662评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,575评论 2 270

推荐阅读更多精彩内容