功耗对处理器的限制究竟有多大?

首先需要澄清的是,这篇文章的作者其实是IC之神-rabaey。rabaey之名无需赘述,上过微电子课程的童鞋想必都被这本《数字集成电路——电路、系统与设计》折磨过,你们的苦难就是拜他所赐。

大神写了新书《low power design essentials》(也不算新,09年的),讲低功耗设计的,今天讲的内容出自该书第一章。

之所以讲第一章,是因为后面的内容没人看得懂。

我们都知道,低功耗设计很重要,尤其是对于移动端处理器以及嵌入式系统。但是功耗对设计究竟影响到了什么程度,相信很多人并没有明确的定量的概念。而rabeay在第一章用一系列数据告诉了我们Power是怎么影响芯片设计的。

上图是统计了近年来主流微处理器(MPU)和DSP的平均功耗。可以看到95年之前,每3年功耗增加4倍;95年之后,每3年增加1.4倍。同时95年前后,移动端应用的快速发展,出现了低功耗处理器的新分支(向下的灰箭头)。

为什么在95年会有功耗增长率减半这个突然变化?因为95年开始,工业界放弃了5V固定电压的设计模式,开始采用等比降压的设计模式。什么叫5V固定电压设计?就是说,早先的处理器供电电压是5V,随着工艺尺寸不断减小,晶体管的阈值电压降低,理论上供电电压也可以减小。但是电压减小意味着晶体管开关速度变慢,IC厂商为了性能考虑,在设计时,即便采用更小的工艺尺寸,照样会保持5V供电电压,带来的后果就是功耗增大很多。什么叫等比降压?就是随着工艺尺寸的缩小,等比例的缩小chip电压。95年左右就是该方案的开始。

上面这张图展示了90年开始芯片电压是怎么变化的。95年之后,在0.35um的工艺中开始采用3.3V供电,此后随着工艺尺寸的不断缩小,供电电压也开始不断降低。在180nm的时候,电压降为1.8V。在130nm的时候,电压降为1.3V。当然了,工艺尺寸2016年已经到达14nm,chip电压可没有降到0.14V。所以,实际情况是随着工艺尺寸进一步减小,chip电压再往下降已经非常困难了。因此,最近几年再次出现了工艺尺寸不断缩小,但是供电电压基本不变的趋势。

为什么工艺尺寸缩小,就一定要降电压?这个就得说到功耗密度(每c㎡的功率

上图展示了功耗密度的变化趋势。可以看到,95年之前,chip上的功耗密度与k成3次方正比,95年之后,随着chip供电电压降低,功耗密度开始与k成0.7次方正比。k是工艺尺寸缩小因子,典型值是1.41。为什么是1.41?这其实是摩尔定律决定的参数,反映了工艺尺寸的演进的跨度。180nm的下一代工艺是130nm,180/130就大约接近1.41。

说了这么多,目前我们知道的是,尽管芯片工艺尺寸不断减小,chip的电压也在不断降低,但是功耗密度仍然在不断增加,但是究竟会达到什么程度?

上图给出了直观的对比。当然了,这是一个很惊悚的图,大概是说按照目前功耗密度的趋势,大概2004年功耗密度将跟核反应一样的程度。2008年达到火箭尾焰的程度。看到这里,我不由得掐指算了算,咦,今年好像2016年了。

上图当然是危言耸听。但是也说明了一个问题,那就是从2004年开始,如果不遏制持续增长的功耗密度,芯片设计将变得不太可能。至少,封装将不太可能。现在的设计普遍认为,功耗密度高于150W/c㎡是应该极力避免的,除非说你完全不在乎封装的成本。

150W/c㎡是个很大的数了,一个2c㎡的chip 能允许的是300W。想象一下指甲壳大小的chip是个300W的热源,有多烫简直不可想象。当然实际的chip远远不到这个功耗就已经烫的不行了。

上面这张图终于给出了我们最关心的主题。根据估算,在20nm工艺下,以前的45nm处理器如果采用1.2V供电,不考虑散热的话,其实运行频率理论上可以达到30GHZ。但是带来的问题就是功耗密度达到惊人的20KW/c㎡,远高于太阳表面的功耗密度。即便运行频率达到10GHZ,功耗密度也达到5KW/c㎡,比火箭的尾焰还热。所以从散热考虑,实际的处理器运行频率都被限制在10GHZ以内,即便晶体管的速度允许其达到10GHZ。

咦?好像又有哪里不太对。我记得Intel的CPU都可以上4G的频率的。按照10G就是5KW/c㎡,4G也妥妥是800W/c㎡,依然远高于我们的阈值:150W/c㎡。那现在的处理器是怎么上4G频率的呢?

这张图给出了解释。对于2cmx2cm的处理器,供电电压假设为0.6V,系统频率假设可以上10GHZ,那么将会有一个极大的功耗密度。但是我们把条件放松一点,对功耗密度除以5(够仁至义尽了),最终总功耗也有4kW。如果要将chip的总功耗限制在200W,结果就是:整个chip将在任何时候只能有5%的门电路翻转。其余的95%必须不消耗任何功耗,连漏电流也不能有。

这就解释了要满足功耗密度限制,如果想做高性能,你必须牺牲什么。那就是只有很少的一部分逻辑能够翻转。

基于以上我们看到了功耗密度对处理器的限制究竟有多大。由于阈值摆在那里:150W/c㎡,所以处理器的频率以及晶体管翻转率就受到了极大的限制。即便晶体管速度允许达到10GHZ,带来的功耗密度也完全不可容忍。想要提高频率,在总功耗一定的情况下,就只能减少晶体管翻转率。

我们经常可以看到新闻报道,某科研机构研制出来了新的晶体管,速度达到几十G乃至上T赫兹,有望改变计算机前景,而对其功耗只字不提。事实上,根据上述介绍,在不改变性能/功耗比的前提下,这些都是扯淡。未来的工艺技术,需要的绝对不仅仅是更快的开关,还需要在更低功耗下的开关

当然,还需要更好的封装技术

比较坑爹的是,封装是有成本的。对于处理器来讲,普通的塑料封装,成本可能只有几美元,但是总功率必须低于3W;高性能的封装,可以允许功率密度达到100W/c㎡,但是需要十几美元的成本。再往上,封装成本越高。

因此,现在的处理器设计其实是一个悖论:想要处理器的性能更高,就必须降低某一频率下的整体功耗。因为只有整体功耗更低,才能允许核心运行更高的频率,才能允许更高的性能。IC设计早已经过了那种性能提高功耗也提高的粗放式增长年代了,在总功耗一定的情况下,性能就是看谁对功耗运用的更合理、更节省。同样的工艺,intel的CPU能上4G散热照样hold住,别人家的CPU则只能上2G或者3G,弱势就很明显。

换句话说,芯片设计者不得不面对的事实是:芯片性能要稳定提高,但是功耗却不能更高,这可真是难啊!在摩尔定律尚未终结的时候,工艺尺寸的不断缩减带来的福利使得这个目标或许不难达成。但是假如工艺尺寸无法继续缩减,漏电流也无法进一步改善,芯片性能还能有提高吗?未来的CPU发展很有可能会是下图的情况,由于总功耗的限制,CPU的性能在有限范围内不断小幅升级,但是终至枯竭,急需新的封装工艺,加工工艺,电池工艺和材料物理的突破,再来一次革命。关于这图,有疑问的只是摩尔定律终结究竟是哪一年,新工艺元年又是哪一年,两者中间有多大的latency而已。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,835评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,598评论 1 295
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,569评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,159评论 0 213
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,533评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,710评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,923评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,674评论 0 203
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,421评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,622评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,115评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,428评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,114评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,097评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,875评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,753评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,649评论 2 271

推荐阅读更多精彩内容

  • 1, dark silicon的起源 在我的上一篇文章功耗对处理器的限制有多大中,其实已经间接提到了现在处理器设计...
    龚黎明阅读 5,731评论 2 9
  • (4个月前写的)上篇介绍了关于CPU性能两个重要指标之一的架构,过了这么久,也应该把第二篇,关于CPU的工艺(制程...
    别着急我来了阅读 5,091评论 2 16
  • ​ 今天学习的是文件IO的操作,需要记录的点: 1.库函数头文件 ​ 在所有Linux系统中,对文件的操作...
    孤狼默戮阅读 535评论 0 0
  • 人海茫茫,遇见的人都有理由,相遇的时光都恰到好处,不是相见恨晚的遗憾也不是没有如果的后悔。 在那个什么也不懂...
    小星姐阅读 1,143评论 0 1
  • 诫子书 夫君子之行,静以修身,俭以养德。非澹泊无以明志,非宁静无以致辞远。夫学须静也,才须学也,非学无以广才,非志...
    治愈的卡其色亮亮虾阅读 238评论 0 0