散列表(哈希表)的基本原理

散列表也叫作哈希表(hash table),这种数据结构提供了键(Key)和值(Value)的映射关系。只要给出一个Key,就可以高效查找到它所匹配的Value,时间复杂度接近于O(1)。

image.png

散列表是如何根据Key来快速找到它所匹配的Value呢?我们需要一个“中转站”,通过某种方式,把Key和数组下标进行转换。这个中转站就叫作哈希函数。
image.png

散列表的读写操作:

1. 写操作(put)

写操作就是在散列表中插入新的键值对(在JDK中叫作Entry)。如调用hashMap.put("002931", "王五"),意思是插入一组Key为002931、Value为王五的键值对。
具体该怎么做呢?
第1步,通过哈希函数,把Key转化成数组下标5。
第2步,如果数组下标5对应的位置没有元素,就把这个Entry填充到数组下标5
的位置。


image.png

但是,由于数组的长度是有限的,当插入的Entry越来越多时,不同的Key通过哈希函数获得的下标有可能是相同的。例如002936这个Key对应的数组下标是2;002947这个Key对应的数组下标也是2。


image.png

这种情况,就叫作哈希冲突。

解决哈希冲突的方法主要有两种,一种是开放寻址法,一种是链表法。
1.开发寻址法
Entry6通过哈希函数得到下标2,该下标在数组中已经有了其他元素,那么就向后移动1位,看看数组下标3的位置是否有空。

image.png

很不巧,下标3也已经被占用,那么就再向后移动1位,看看数组下标4的位置是否有空。
image.png

幸运的是,数组下标4的位置还没有被占用,因此把Entry6存入数组下标4的位置。
image.png

这就是开放寻址法的基本思路。当然,在遇到哈希冲突时,寻址方式有很多种,并不一定只是简单地寻找当前元素的后一个元素,这里只是举一个简单的示例而已。
2.链表法
HashMap数组的每一个元素不仅是一个Entry对象,还是一个链表的头节点。每一个Entry对象通过next指针指向它的下一个Entry节点。当新来的Entry映射到与之冲突的数组位置时,只需要插入到对应的链表中即可。
image.png

2.读操作

调用 hashMap.get("002936"),意思是查找Key为002936的Entry在散列表中所对应的值。
第1步,通过哈希函数,把Key转化成数组下标2。
第2步,找到数组下标2所对应的元素,如果这个元素的Key是002936,那么就找到了;如果这个Key不是002936也没关系,由于数组的每个元素都与一个链表对应,我们可以顺着链表慢慢往下找,看看能否找到与Key相匹配的节点。


image.png

在上图中,首先查到的节点Entry6的Key是002947,和待查找的Key 002936不符。接着定位到链表下一个节点Entry1,发现Entry1的Key 002936正是我们要寻找的,所以返回Entry1的Value即可。

3.扩容

首先,什么时候需要进行扩容呢?
当经过多次元素插入,散列表达到一定饱和度时,Key映射位置发生冲突的概率会逐渐提高。这样一来,大量元素拥挤在相同的数组下标位置,形成很长的链表,对后续插入操作和查询操作的性能都有很大影响。这时,散列表就需要扩展它的长度,也就是进行扩容。


image.png

扩容不是简单地把散列表的长度扩大,而是经历了下面两个步骤。
1.扩容,创建一个新的Entry空数组,长度是原数组的2倍。
2.重新Hash,遍历原Entry数组,把所有的Entry重新Hash到新数组中。为什么要重新Hash呢?因为长度扩大以后,Hash的规则也随之改变。
经过扩容,原本拥挤的散列表重新变得稀疏,原有的Entry也重新得到了尽可能均匀的分配。


image.png

扩容后的HashMap
image.png

以上就是散列表各种基本操作的原理。由于HashMap的实现代码相对比较复杂,这里就不直接列出源码了,有兴趣的读者可以在JDK中直接阅读HashMap类的源码。

需要注意的是,关于HashMap的实现,JDK 8和以前的版本有着很大的不同。当多个Entry被Hash到同一个数组下标位置时,为了提升插入和查找的效率,HashMap会把Entry的链表转化为红黑树这种数据结构。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,716评论 4 364
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,558评论 1 294
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 109,431评论 0 244
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 44,127评论 0 209
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,511评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,692评论 1 222
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,915评论 2 313
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,664评论 0 202
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,412评论 1 246
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,616评论 2 245
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,105评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,424评论 2 254
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,098评论 3 238
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,096评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,869评论 0 197
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,748评论 2 276
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,641评论 2 271

推荐阅读更多精彩内容