目标检测:R-CNN问题总结

一、R-CNN的处理思想

    1. 采用CNN网络提取图像特征;
    1. 采用大样本下有监督预训练+小样本微调的方式解决小样本难以训练甚至过拟合等问题。

二、测试过程

  • 1.输入一张多目标图像,采用selective search算法提取约2000个候选框;
  • 2.先在每个候选框周围加上16个像素值,作为候选框像素平均值的边框,再直接变形为227×227的大小;
  • 3.依次将每个227×227的候选框输入AlexNet CNN网络,获取4096维的特征,2000个候选框的CNN特征组合成2000×4096维矩阵;
  • 4.将2000×4096维特征与20个SVM组成的权值矩阵4096×20相乘(20种分类,SVM是二分类器,则有20个SVM),获得2000×20维矩阵表示每个候选框是某个物体类别的得分;
  • 5.分别对上述2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框;
  • 6.分别用20个回归器对上述20个类别中剩余的建议框进行回归操作,最终得到每个类别的修正后的得分最高的bounding box。

三、区域合并

1.区域合并的方法

区域的合并方式是有层次的(hierarchical),类似于哈夫曼树的构造过程。

哈夫曼树的构造过程

输入:彩色图片(三通道)
输出:物体位置的可能结果L
1. 使用 Efficient Graph-Based Image Segmentation的方法获取原始分割区域R={r1,r2,…,rn}
2. 初始化相似度集合S=∅
3. 计算两两相邻区域之间的相似度(见第三部分),将其添加到相似度集合S中
4. 从相似度集合S中找出,相似度最大的两个区域 ri 和rj,将其合并成为一个区域 rt,从相似度集合中除去原先与ri和rj相邻区域之间计算的相似度,计算rt与其相邻区域(原先与ri或rj相邻的区域)的相似度,将其结果添加的到相似度集合S中。同时将新区域 rt 添加到 区域集合R中。
5. 获取每个区域的Bounding Boxes,这个结果就是物体位置的可能结果L。

2.相似度计算

在区域合并时计算区域之间的相似度的四种方法:
1. 颜色(color)相似度
使用L1-norm归一化获取图像每个颜色通道的25 bins的直方图,这样每个区域都可以得到一个75维的向量

,区域之间颜色相似度通过下面的公式计算:

在区域合并过程中使用需要对新的区域进行计算其直方图,计算方法:

2. 纹理(texture)相似度
这里的纹理采用SIFT-Like特征。具体做法是对每个颜色通道的8个不同方向计算方差σ=1的高斯微分(Gaussian Derivative),每个通道每个颜色获取10 bins的直方图(L1-norm归一化),这样就可以获取到一个240维的向量

,区域之间纹理相似度计算方式和颜色相似度计算方式类似,合并之后新区域的纹理特征计算方式和颜色特征计算相同:


3. 大小(size)相似度
这里的大小是指区域中包含像素点的个数。使用大小的相似度计算,主要是为了尽量让小的区域先合并:

4. 吻合(fit)相似度
这里主要是为了衡量两个区域是否更加“吻合”,其指标是合并后的区域的Bounding Box(能够框住区域的最小矩形(没有旋转))越小,其吻合度越高。其计算方式:

最后将上述相似度计算方式组合到一起,可以写成如下,其中

四、问题总结

1. selective search
采取过分割手段,将图像分割成小区域,再通过颜色直方图,梯度直方图相近等规则进行合并,最后生成约2000个建议框的操作。

2. 为什么要将建议框变形为227×227?怎么做?
本文采用AlexNet CNN网络进行CNN特征提取,为了适应AlexNet网络的输入图像大小:227×227,故将所有建议框变形为227×227。
变形方式有一下几种:
① 考虑context【图像中context指RoI周边像素】的各向同性变形,建议框像周围像素扩充到227×227,若遇到图像边界则用建议框像素均值填充,下图第二列;
② 不考虑context的各向同性变形,直接用建议框像素均值填充至227×227,下图第三列;
③ 各向异性变形,简单粗暴对图像就行缩放至227×227,下图第四列;
④ 变形前先进行边界像素填充【padding】处理,即向外扩展建议框边界,以上三种方法中分别采用padding=0下图第一行,padding=16下图第二行进行处理;

经过作者一系列实验表明采用padding=16的各向异性变形即下图第二行第三列效果最好,能使mAP提升3-5%。


图片处理
  1. CNN特征如何可视化?
    文中采用了巧妙的方式将AlexNet CNN网络中Pool5层特征进行了可视化。该层的size是6×6×256,即有256种表示不同的特征,这相当于原始227×227图片中有256种195×195的感受视野【相当于对227×227的输入图像,卷积核大小为195×195,padding=4,step=8,输出大小(227-195+2×4)/8+1=6×6】;
    文中将这些特征视为”物体检测器”,输入10million的Region Proposal集合,计算每种6×6特征即“物体检测器”的激活量,之后进行非极大值抑制【下面解释】,最后展示出每种6×6特征即“物体检测器”前几个得分最高的Region Proposal,从而给出了这种6×6的特征图表示了什么纹理、结构,很有意思。
  2. 为什么要进行非极大值抑制?非极大值抑制又如何操作?
    先解释什么叫IoU。如下图所示IoU即表示(A∩B)/(A∪B)

在测试过程完成到第4步之后,获得2000×20维矩阵表示每个建议框是某个物体类别的得分情况,此时会遇到下图所示情况,同一个车辆目标会被多个建议框包围,这时需要非极大值抑制操作去除得分较低的候选框以减少重叠框。


具体怎么做呢?
① 对2000×20维矩阵中每列按从大到小进行排序;
② 从每列最大的得分建议框开始,分别与该列后面的得分建议框进行IoU计算,若IoU>阈值,则剔除得分较小的建议框,否则认为图像中存在多个同一类物体;
③ 从每列次大的得分建议框开始,重复步骤②;
④ 重复步骤③直到遍历完该列所有建议框;
⑤ 遍历完2000×20维矩阵所有列,即所有物体种类都做一遍非极大值抑制;
⑥ 最后剔除各个类别中剩余建议框得分少于该类别阈值的建议框。

  1. 为什么要采用回归器?回归器是什么有什么用?如何进行操作?

    首先要明确目标检测不仅是要对目标进行识别,还要完成定位任务,所以最终获得的bounding-box也决定了目标检测的精度。
    这里先解释一下什么叫定位精度:定位精度可以用算法得出的物体检测框与实际标注的物体边界框的IoU值来近似表示。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 159,015评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,262评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,727评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,986评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,363评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,610评论 1 219
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,871评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,582评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,297评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,551评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,053评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,385评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,035评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,079评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,841评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,648评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,550评论 2 270

推荐阅读更多精彩内容