RunLoop学习笔记

什么是runloop?

一般来讲,一个线程一次只能执行一个任务,执行完成后线程就会退出。如果我们需要一个机制,让线程能随时处理事件但并不退出,通常的代码逻辑是这样的:

functionloop(){

initialize();

do{

varmessage=get_next_message();

process_message(message);

}while(message!=quit);

}

这种模型通常被称作Event Loop。Event Loop 在很多系统和框架里都有实现,比如 Node.js 的事件处理,比如 Windows 程序的消息循环,再比如 OSX/iOS 里的 RunLoop。实现这种模型的关键点在于:如何管理事件/消息,如何让线程在没有处理消息时休眠以避免资源占用、在有消息到来时立刻被唤醒。

因此,runloop其实就是一个对象,这个对象管理了其要处理的事件和消息,并提供一个入口函数来执行event loop(即上述循环)的逻辑。当线程执行了这个函数就会一直处于“接收消息->等待->处理消息”的循环中,直致循环结束,函数返回。

runloop与线程的关系

在iOS中我们知道NSThread和pthread_t是一一对应的。CFRunLoop是机遇pthread来管理的。iOS开发都知道,苹果不允许直接创建runloop,只是给我们提供了两个获取方法:CFRunLoopGetMain()和CFRunLoopGetCurrent(),两个方法的内部实现大概是:

1、创建全局字典,以pthread为key,runloop为value;

2、获取传入的pthread;

2-3、访问字典时要加锁;

3、如果字典为nil,创建一个runloop,并初始化全局字典;

4、如果字典不为空,根据传入的pthread,获取runloop;

5、如果获取不到runloop,则要创建一个runloop,与pthread组成键值对,存入全局字典,并为其注册一个毁掉,确保在线程销毁的时候把runloop也销毁;

5-6、全局字典访问完毕,要解锁;

6、返回runloop;

以上过程可用如下代码大概表示:

/// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef

static CFMutableDictionaryRef loopsDic;

/// 访问 loopsDic 时的锁

static CFSpinLock_t loopsLock;

/// 获取一个 pthread 对应的 RunLoop。

CFRunLoopRef_CFRunLoopGet(pthread_tthread){

OSSpinLockLock(&loopsLock);//加锁

if(!loopsDic){

// 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。

loopsDic=CFDictionaryCreateMutable();

CFRunLoopRefmainLoop=_CFRunLoopCreate();

CFDictionarySetValue(loopsDic,pthread_main_thread_np(),mainLoop);

}

/// 直接从 Dictionary 里获取。

CFRunLoopRefloop=CFDictionaryGetValue(loopsDic,thread));

if(!loop){

/// 取不到时,创建一个

loop=_CFRunLoopCreate();

CFDictionarySetValue(loopsDic,thread,loop);

/// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。

_CFSetTSD(...,thread,loop,__CFFinalizeRunLoop);

}

OSSpinLockUnLock(&loopsLock);

returnloop;

}

CFRunLoopRefCFRunLoopGetMain(){//获取主线程runloop

return_CFRunLoopGet(pthread_main_thread_np());

}

CFRunLoopRefCFRunLoopGetCurrent(){//获取d当前线程runloop

return_CFRunLoopGet(pthread_self());

}

经过如上分析,我们可以知道:RunLoop与线程是一一对应的关系,且这种关系保存在一个全局字典中。

同时,也可以知道,线程在刚创建时并没有runloop,如果不去主动获取,就一直不会有。所以,runloop只有在第一次获取的时候,才会去创建,在线程销毁的时候销毁。runloop是存在于线程内部的,当然主线程除外。

runloop接口(可用)

在CoreFoundation里关于runloop有5个类:

CFRunLoopRef(运行循环对象)

CFRunLoopModeRef(该类未对外暴露,通过CFRunLoopRef进行了封装,见下图,1个runLoop可以有很多个Mode,1个Mode可以有很多个(Source/Observer/Timer),但是在同一时刻只能同时执行一种Mode)

CFRunLoopSourceRef(处理事件)

CFRunLoopTimerRef(处理定时器相关)

CFRunLoopObserverRef(观察者,观察是否有事件)

CFRunLoopSourceRef 是事件产生的地方。source分为source0和source1

一、source0只包含一个回调(函数指针),它并不能主动触发事件。使用时需要:

1)调用CFRunLoopSourceSignal(source),将这个source标记为待处理

2)手动调用CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。

二、source1包含了一个mach_port和一个回调(函数指针),被用于通过内核和其它线程相互发送消息。这种source能主动唤醒runloop的线程。其原理是:====

CFRunLoopTimerRef 是基于时间的触发器 和NSTimer可以混用。其包含一个时间长度和一个回调(指针函数)。当期加入到runloop时,runloop会注册对应的时间点,当时间到时,runloop被唤醒执行对应的回调。

CFRunLoopObserverRef 是观察者,每个Observer都包含了一个回调(函数指针),当 runloop的状态发生改变时,观察者就能通过回调接受这一变化,做出处理。可以观察的状态有:

typedefCF_OPTIONS(CFOptionFlags,CFRunLoopActivity){

kCFRunLoopEntry=(1UL<<0),// 即将进入Loop

kCFRunLoopBeforeTimers=(1UL<<1),// 即将处理 Timer

kCFRunLoopBeforeSources=(1UL<<2),// 即将处理 Source

kCFRunLoopBeforeWaiting=(1UL<<5),// 即将进入休眠

kCFRunLoopAfterWaiting=(1UL<<6),// 刚从休眠中唤醒

kCFRunLoopExit=(1UL<<7),// 即将退出Loop

};

一个runloop包含若干个Mode,每个Mode又包含若干个Source/Observer/Timer。每次调用runloop的主函数时,只能指定一个Mode,我们称这个Mode为currentMode。如果要切换为另一个Mode,只能是先退出runloop,然后重新指定Mode在进入,这样做的目的是为了区分开不同的Source/Observer/Timer,使其互不影响。

我们将Source/Timer/Observer 统称为mode item,一个item可以被同时加入多个mode,但一个item被重复加入同一个mode时是不会有效果的。如果,一个mode中一个item都没有,那么runloop会直接退出,不进入循环。

RunLoop 的 Mode

CFRunLoopMode 和 CFRunLoop 的结构大致如下:

struct__CFRunLoopMode{

CFStringRef_name;// Mode Name, 例如 @"kCFRunLoopDefaultMode"

CFMutableSetRef_sources0;// Set

CFMutableSetRef_sources1;// Set

CFMutableArrayRef_observers;// Array

CFMutableArrayRef_timers;// Array

...

};

struct__CFRunLoop{

CFMutableSetRef_commonModes;// Set

CFMutableSetRef_commonModeItems;// Set

CFRunLoopModeRef_currentMode;// Current Runloop Mode

CFMutableSetRef_modes;// Set

...

};

这里有个概念叫 "CommonModes":一个 Mode 可以将自己标记为"Common"属性(通过将其 ModeName 添加到 RunLoop 的 "commonModes" 中)。每当 RunLoop 的内容发生变化时,RunLoop 都会自动将 _commonModeItems 里的 Source/Observer/Timer 同步到具有 "Common" 标记的所有Mode里。

应用场景举例:主线程的 RunLoop 里有两个预置的 Mode:kCFRunLoopDefaultMode 和 UITrackingRunLoopMode。这两个 Mode 都已经被标记为"Common"属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪 ScrollView 滑动时的状态。当你创建一个 Timer 并加到 DefaultMode 时,Timer 会得到重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,这时 Timer 就不会被回调,并且也不会影响到滑动操作。

有时你需要一个 Timer,在两个 Mode 中都能得到回调,一种办法就是将这个 Timer 分别加入这两个 Mode。还有一种方式,就是将 Timer 加入到顶层的 RunLoop 的 "commonModeItems" 中。"commonModeItems" 被 RunLoop 自动更新到所有具有"Common"属性的 Mode 里去。

CFRunLoop对外暴露的管理 Mode 接口只有下面2个:

CFRunLoopAddCommonMode(CFRunLoopRefrunloop,CFStringRefmodeName);

CFRunLoopRunInMode(CFStringRefmodeName,...);

Mode 暴露的管理 mode item 的接口有下面几个:

CFRunLoopAddSource(CFRunLoopRefrl,CFRunLoopSourceRefsource,CFStringRefmodeName);

CFRunLoopAddObserver(CFRunLoopRefrl,CFRunLoopObserverRefobserver,CFStringRefmodeName);

CFRunLoopAddTimer(CFRunLoopRefrl,CFRunLoopTimerReftimer,CFStringRefmode);

CFRunLoopRemoveSource(CFRunLoopRefrl,CFRunLoopSourceRefsource,CFStringRefmodeName);

CFRunLoopRemoveObserver(CFRunLoopRefrl,CFRunLoopObserverRefobserver,CFStringRefmodeName);

CFRunLoopRemoveTimer(CFRunLoopRefrl,CFRunLoopTimerReftimer,CFStringRefmode);

你只能通过 mode name 来操作内部的 mode,当你传入一个新的 mode name 但 RunLoop 内部没有对应 mode 时,RunLoop会自动帮你创建对应的 CFRunLoopModeRef。对于一个 RunLoop 来说,其内部的 mode 只能增加不能删除。

苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode,你可以用这两个 Mode Name 来操作其对应的 Mode。

同时苹果还提供了一个操作 Common 标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作 Common Items,或标记一个 Mode 为 "Common"。使用时注意区分这个字符串和其他 mode name。

RunLoop 的内部逻辑

根据苹果在文档里的说明,RunLoop 内部的逻辑大致如下:

其内部代码整理如下:

/// 用DefaultMode启动

voidCFRunLoopRun(void){

CFRunLoopRunSpecific(CFRunLoopGetCurrent(),kCFRunLoopDefaultMode,1.0e10,false);

}

/// 用指定的Mode启动,允许设置RunLoop超时时间

intCFRunLoopRunInMode(CFStringRefmodeName,CFTimeIntervalseconds,BooleanstopAfterHandle){

returnCFRunLoopRunSpecific(CFRunLoopGetCurrent(),modeName,seconds,returnAfterSourceHandled);

}

/// RunLoop的实现

intCFRunLoopRunSpecific(runloop,modeName,seconds,stopAfterHandle){

/// 首先根据modeName找到对应mode

CFRunLoopModeRefcurrentMode=__CFRunLoopFindMode(runloop,modeName,false);

/// 如果mode里没有source/timer/observer, 直接返回。

if(__CFRunLoopModeIsEmpty(currentMode))return;

/// 1. 通知 Observers: RunLoop 即将进入 loop。

__CFRunLoopDoObservers(runloop,currentMode,kCFRunLoopEntry);

/// 内部函数,进入loop

__CFRunLoopRun(runloop,currentMode,seconds,returnAfterSourceHandled){

BooleansourceHandledThisLoop=NO;

intretVal=0;

do{

/// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。

__CFRunLoopDoObservers(runloop,currentMode,kCFRunLoopBeforeTimers);

/// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。

__CFRunLoopDoObservers(runloop,currentMode,kCFRunLoopBeforeSources);

/// 执行被加入的block

__CFRunLoopDoBlocks(runloop,currentMode);

/// 4. RunLoop 触发 Source0 (非port) 回调。

sourceHandledThisLoop=__CFRunLoopDoSources0(runloop,currentMode,stopAfterHandle);

/// 执行被加入的block

__CFRunLoopDoBlocks(runloop,currentMode);

/// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。

if(__Source0DidDispatchPortLastTime){

BooleanhasMsg=__CFRunLoopServiceMachPort(dispatchPort,&msg)

if(hasMsg)gotohandle_msg;

}

/// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。

if(!sourceHandledThisLoop){

__CFRunLoopDoObservers(runloop,currentMode,kCFRunLoopBeforeWaiting);

}

/// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。

/// • 一个基于 port 的Source 的事件。

/// • 一个 Timer 到时间了

/// • RunLoop 自身的超时时间到了

/// • 被其他什么调用者手动唤醒

__CFRunLoopServiceMachPort(waitSet,&msg,sizeof(msg_buffer),&livePort){

mach_msg(msg,MACH_RCV_MSG,port);// thread wait for receive msg

}

/// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。

__CFRunLoopDoObservers(runloop,currentMode,kCFRunLoopAfterWaiting);

/// 收到消息,处理消息。

handle_msg:

/// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。

if(msg_is_timer){

__CFRunLoopDoTimers(runloop,currentMode,mach_absolute_time())

}

/// 9.2 如果有dispatch到main_queue的block,执行block。

elseif(msg_is_dispatch){

__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);

}

/// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件

else{

CFRunLoopSourceRefsource1=__CFRunLoopModeFindSourceForMachPort(runloop,currentMode,livePort);

sourceHandledThisLoop=__CFRunLoopDoSource1(runloop,currentMode,source1,msg);

if(sourceHandledThisLoop){

mach_msg(reply,MACH_SEND_MSG,reply);

}

}

/// 执行加入到Loop的block

__CFRunLoopDoBlocks(runloop,currentMode);

if(sourceHandledThisLoop&&stopAfterHandle){

/// 进入loop时参数说处理完事件就返回。

retVal=kCFRunLoopRunHandledSource;

}elseif(timeout){

/// 超出传入参数标记的超时时间了

retVal=kCFRunLoopRunTimedOut;

}elseif(__CFRunLoopIsStopped(runloop)){

/// 被外部调用者强制停止了

retVal=kCFRunLoopRunStopped;

}elseif(__CFRunLoopModeIsEmpty(runloop,currentMode)){

/// source/timer/observer一个都没有了

retVal=kCFRunLoopRunFinished;

}

/// 如果没超时,mode里没空,loop也没被停止,那继续loop。

}while(retVal==0);

}

/// 10. 通知 Observers: RunLoop 即将退出。

__CFRunLoopDoObservers(rl,currentMode,kCFRunLoopExit);

}

可以看到,实际上 RunLoop 就是这样一个函数,其内部是一个 do-while 循环。当你调用 CFRunLoopRun() 时,线程就会一直停留在这个循环里;直到超时或被手动停止,该函数才会返回。

RunLoop 的底层实现

从上面代码可以看到,RunLoop 的核心是基于 mach port 的,其进入休眠时调用的函数是 mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS 的系统架构。

苹果官方将整个系统大致划分为上述4个层次:

应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。

应用框架层即开发人员接触到的 Cocoa 等框架。

核心框架层包括各种核心框架、OpenGL 等内容。

Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在opensource.apple.com里找到。

我们在深入看一下 Darwin 这个核心的架构:

其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。

XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。

BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。

IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。

Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为"对象"。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。"消息"是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。

Mach 的消息定义是在 头文件的,很简单:

typedefstruct{

mach_msg_header_theader;

mach_msg_body_tbody;

}mach_msg_base_t;

typedefstruct{

mach_msg_bits_tmsgh_bits;

mach_msg_size_tmsgh_size;

mach_port_tmsgh_remote_port;

mach_port_tmsgh_local_port;

mach_port_name_tmsgh_voucher_port;

mach_msg_id_tmsgh_id;

}mach_msg_header_t;

一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口 local_port 和目标端口 remote_port,

发送和接受消息是通过同一个 API 进行的,其 option 标记了消息传递的方向:

mach_msg_return_tmach_msg(

mach_msg_header_t *msg,

mach_msg_option_toption,

mach_msg_size_tsend_size,

mach_msg_size_trcv_size,

mach_port_name_trcv_name,

mach_msg_timeout_ttimeout,

mach_port_name_tnotify);

为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:

这些概念可以参考维基百科:System_callTrap_(computing)

RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。

苹果用 RunLoop 实现的功能

首先我们可以看一下 App 启动后 RunLoop 的状态:

CFRunLoop{

currentmode=kCFRunLoopDefaultMode

commonmodes={

UITrackingRunLoopMode

kCFRunLoopDefaultMode

}

commonmodeitems={

// source0 (manual)

CFRunLoopSource{order=-1,{

callout=_UIApplicationHandleEventQueue}}

CFRunLoopSource{order=-1,{

callout=PurpleEventSignalCallback}}

CFRunLoopSource{order=0,{

callout=FBSSerialQueueRunLoopSourceHandler}}

// source1 (mach port)

CFRunLoopSource{order=0,{port=17923}}

CFRunLoopSource{order=0,{port=12039}}

CFRunLoopSource{order=0,{port=16647}}

CFRunLoopSource{order=-1,{

callout=PurpleEventCallback}}

CFRunLoopSource{order=0,{port=2407,

callout=_ZL20notify_port_callbackP12__CFMachPortPvlS1_}}

CFRunLoopSource{order=0,{port=1c03,

callout=__IOHIDEventSystemClientAvailabilityCallback}}

CFRunLoopSource{order=0,{port=1b03,

callout=__IOHIDEventSystemClientQueueCallback}}

CFRunLoopSource{order=1,{port=1903,

callout=__IOMIGMachPortPortCallback}}

// Ovserver

CFRunLoopObserver{order=-2147483647,activities=0x1,// Entry

callout=_wrapRunLoopWithAutoreleasePoolHandler}

CFRunLoopObserver{order=0,activities=0x20,// BeforeWaiting

callout=_UIGestureRecognizerUpdateObserver}

CFRunLoopObserver{order=1999000,activities=0xa0,// BeforeWaiting | Exit

callout=_afterCACommitHandler}

CFRunLoopObserver{order=2000000,activities=0xa0,// BeforeWaiting | Exit

callout=_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}

CFRunLoopObserver{order=2147483647,activities=0xa0,// BeforeWaiting | Exit

callout=_wrapRunLoopWithAutoreleasePoolHandler}

// Timer

CFRunLoopTimer{firing=No,interval=3.1536e+09,tolerance=0,

nextfiredate=453098071(-4421.76019@96223387169499),

callout=_ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv(QuartzCore.framework)}

},

modes={

CFRunLoopMode{

sources0={/* same as 'common mode items' */},

sources1={/* same as 'common mode items' */},

observers={/* same as 'common mode items' */},

timers={/* same as 'common mode items' */},

},

CFRunLoopMode{

sources0={/* same as 'common mode items' */},

sources1={/* same as 'common mode items' */},

observers={/* same as 'common mode items' */},

timers={/* same as 'common mode items' */},

},

CFRunLoopMode{

sources0={

CFRunLoopSource{order=0,{

callout=FBSSerialQueueRunLoopSourceHandler}}

},

sources1=(null),

observers={

CFRunLoopObserver>{activities=0xa0,order=2000000,

callout=_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}

)},

timers=(null),

},

CFRunLoopMode{

sources0={

CFRunLoopSource{order=-1,{

callout=PurpleEventSignalCallback}}

},

sources1={

CFRunLoopSource{order=-1,{

callout=PurpleEventCallback}}

},

observers=(null),

timers=(null),

},

CFRunLoopMode{

sources0=(null),

sources1=(null),

observers=(null),

timers=(null),

}

}

}

可知,系统默认注册了5个Mode:

1. kCFRunLoopDefaultMode: App的默认 Mode,通常主线程是在这个 Mode 下运行的。

2. UITrackingRunLoopMode: 界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响。

3. UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就不再使用。

4: GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到。

5: kCFRunLoopCommonModes: 这是一个占位的 Mode,没有实际作用。

这5个Mode在开发中相应比较常用,其他的在开发中就很少用得到。

断点调试的时候,一般可以从调用栈上看到runloop的回调函数,一下整理了几个函数,在调用栈中看到的函数名在这里查找一下就能定位到具体的调用地方:

{

/// 1. 通知Observers,即将进入RunLoop

/// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();

__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry);

do{

/// 2. 通知 Observers: 即将触发 Timer 回调。

__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);

/// 3. 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。

__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);

__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);

/// 4. 触发 Source0 (非基于port的) 回调。

__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);

__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);

/// 6. 通知Observers,即将进入休眠

/// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();

__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);

/// 7. sleep to wait msg.

mach_msg()->mach_msg_trap();

/// 8. 通知Observers,线程被唤醒

__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);

/// 9. 如果是被Timer唤醒的,回调Timer

__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);

/// 9. 如果是被dispatch唤醒的,执行所有调用 dispatch_async 等方法放入main queue 的 block

__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);

/// 9. 如果如果Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件

__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);

}while(...);

/// 10. 通知Observers,即将退出RunLoop

/// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();

__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);

}

AutoreleasePool

App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。

第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。

第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。

在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool 了。

事件响应

苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()。

当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。这个过程的详细情况可以参考这里。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给需要的App进程。随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。

_UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。

手势识别

当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。

苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。

当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。

界面更新

当在操作 UI 时,比如改变了 Frame、更新了 UIView/CALayer 的层次时,或者手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理,并被提交到一个全局的容器去。

苹果注册了一个 Observer 监听 BeforeWaiting(即将进入休眠) 和 Exit (即将退出Loop) 事件,回调去执行一个很长的函数:

_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。

这个函数内部的调用栈大概是这样的:

_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()

QuartzCore:CA::Transaction::observer_callback:

CA::Transaction::commit();

CA::Context::commit_transaction();

CA::Layer::layout_and_display_if_needed();

CA::Layer::layout_if_needed();

[CALayerlayoutSublayers];

[UIViewlayoutSubviews];

CA::Layer::display_if_needed();

[CALayerdisplay];

[UIViewdrawRect];

定时器

NSTimer 其实就是 CFRunLoopTimerRef,他们之间是 toll-free bridged 的。一个 NSTimer 注册到 RunLoop 后,RunLoop 会为其重复的时间点注册好事件。例如 10:00, 10:10, 10:20 这几个时间点。RunLoop为了节省资源,并不会在非常准确的时间点回调这个Timer。Timer 有个属性叫做 Tolerance (宽容度),标示了当时间点到后,容许有多少最大误差。

如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10 时我忙着玩手机错过了那个点的公交,那我只能等 10:20 这一趟了。

CADisplayLink 是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不一样,其内部实际是操作了一个 Source)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer 相似),造成界面卡顿的感觉。在快速滑动TableView时,即使一帧的卡顿也会让用户有所察觉。Facebook 开源的 AsyncDisplayLink 就是为了解决界面卡顿的问题,其内部也用到了 RunLoop,这个稍后我会再单独写一页博客来分析。

PerformSelecter

当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会创建一个 Timer 并添加到当前线程的 RunLoop 中。所以如果当前线程没有 RunLoop,则这个方法会失效。

当调用 performSelector:onThread: 时,实际上其会创建一个 Timer 加到对应的线程去,同样的,如果对应线程没有 RunLoop 该方法也会失效。

关于GCD

实际上 RunLoop 底层也会用到 GCD 的东西,比如 RunLoop 是用 dispatch_source_t 实现的 Timer(评论中有人提醒,NSTimer 是用了 XNU 内核的 mk_timer,我也仔细调试了一下,发现 NSTimer 确实是由 mk_timer 驱动,而非 GCD 驱动的)。但同时 GCD 提供的某些接口也用到了 RunLoop, 例如 dispatch_async()。

当调用 dispatch_async(dispatch_get_main_queue(), block) 时,libDispatch 会向主线程的 RunLoop 发送消息,RunLoop会被唤醒,并从消息中取得这个 block,并在回调 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__() 里执行这个 block。但这个逻辑仅限于 dispatch 到主线程,dispatch 到其他线程仍然是由 libDispatch 处理的。

关于网络请求

iOS 中,关于网络请求的接口自下至上有如下几层:

CFSocket

CFNetwork->ASIHttpRequest

NSURLConnection->AFNetworking

NSURLSession->AFNetworking2,Alamofire

CFSocket 是最底层的接口,只负责 socket 通信。

CFNetwork 是基于 CFSocket 等接口的上层封装,ASIHttpRequest 工作于这一层。

NSURLConnection 是基于 CFNetwork 的更高层的封装,提供面向对象的接口,AFNetworking 工作于这一层。

NSURLSession 是 iOS7 中新增的接口,表面上是和 NSURLConnection 并列的,但底层仍然用到了 NSURLConnection 的部分功能 (比如 com.apple.NSURLConnectionLoader 线程),AFNetworking2 和 Alamofire 工作于这一层。

下面主要介绍下 NSURLConnection 的工作过程。

通常使用 NSURLConnection 时,你会传入一个 Delegate,当调用了 [connection start] 后,这个 Delegate 就会不停收到事件回调。实际上,start 这个函数的内部会会获取 CurrentRunLoop,然后在其中的 DefaultMode 添加了4个 Source0 (即需要手动触发的Source)。CFMultiplexerSource 是负责各种 Delegate 回调的,CFHTTPCookieStorage 是处理各种 Cookie 的。

当开始网络传输时,我们可以看到 NSURLConnection 创建了两个新线程:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 连接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并通过之前添加的 Source0 通知到上层的 Delegate。

NSURLConnectionLoader 中的 RunLoop 通过一些基于 mach port 的 Source 接收来自底层 CFSocket 的通知。当收到通知后,其会在合适的时机向 CFMultiplexerSource 等 Source0 发送通知,同时唤醒 Delegate 线程的 RunLoop 来让其处理这些通知。CFMultiplexerSource 会在 Delegate 线程的 RunLoop 对 Delegate 执行实际的回调。

RunLoop 的实际应用举例

AFNetworking

AFURLConnectionOperation这个类是基于 NSURLConnection 构建的,其希望能在后台线程接收 Delegate 回调。为此 AFNetworking 单独创建了一个线程,并在这个线程中启动了一个 RunLoop:

+(void)networkRequestThreadEntryPoint:(id)__unusedobject{

@autoreleasepool{

[[NSThreadcurrentThread]setName:@"AFNetworking"];

NSRunLoop *runLoop=[NSRunLoopcurrentRunLoop];

[runLoopaddPort:[NSMachPortport]forMode:NSDefaultRunLoopMode];

[runLooprun];

}

}

+(NSThread *)networkRequestThread{

staticNSThread *_networkRequestThread=nil;

staticdispatch_once_toncePredicate;

dispatch_once(&oncePredicate,^{

_networkRequestThread=[[NSThreadalloc]initWithTarget:selfselector:@selector(networkRequestThreadEntryPoint:)object:nil];

[_networkRequestThreadstart];

});

return_networkRequestThread;

}

RunLoop 启动前内部必须要有至少一个 Timer/Observer/Source,所以 AFNetworking 在 [runLoop run] 之前先创建了一个新的 NSMachPort 添加进去了。通常情况下,调用者需要持有这个 NSMachPort (mach_port) 并在外部线程通过这个 port 发送消息到 loop 内;但此处添加 port 只是为了让 RunLoop 不至于退出,并没有用于实际的发送消息。

-(void)start{

[self.locklock];

if([selfisCancelled]){

[selfperformSelector:@selector(cancelConnection)onThread:[[selfclass]networkRequestThread]withObject:nilwaitUntilDone:NOmodes:[self.runLoopModesallObjects]];

}elseif([selfisReady]){

self.state=AFOperationExecutingState;

[selfperformSelector:@selector(operationDidStart)onThread:[[selfclass]networkRequestThread]withObject:nilwaitUntilDone:NOmodes:[self.runLoopModesallObjects]];

}

[self.lockunlock];

}

12

当需要这个后台线程执行任务时,AFNetworking 通过调用 [NSObject performSelector:onThread:..] 将这个任务扔到了后台线程的 RunLoop 中。

AsyncDisplayKit

AsyncDisplayKit是 Facebook 推出的用于保持界面流畅性的框架,其原理大致如下:

UI 线程中一旦出现繁重的任务就会导致界面卡顿,这类任务通常分为3类:排版,绘制,UI对象操作。

排版通常包括计算视图大小、计算文本高度、重新计算子式图的排版等操作。

绘制一般有文本绘制 (例如 CoreText)、图片绘制 (例如预先解压)、元素绘制 (Quartz)等操作。

UI对象操作通常包括 UIView/CALayer 等 UI 对象的创建、设置属性和销毁。

其中前两类操作可以通过各种方法扔到后台线程执行,而最后一类操作只能在主线程完成,并且有时后面的操作需要依赖前面操作的结果 (例如TextView创建时可能需要提前计算出文本的大小)。ASDK 所做的,就是尽量将能放入后台的任务放入后台,不能的则尽量推迟 (例如视图的创建、属性的调整)。

为此,ASDK 创建了一个名为 ASDisplayNode 的对象,并在内部封装了 UIView/CALayer,它具有和 UIView/CALayer 相似的属性,例如 frame、backgroundColor等。所有这些属性都可以在后台线程更改,开发者可以只通过 Node 来操作其内部的 UIView/CALayer,这样就可以将排版和绘制放入了后台线程。但是无论怎么操作,这些属性总需要在某个时刻同步到主线程的 UIView/CALayer 去。

ASDK 仿照 QuartzCore/UIKit 框架的模式,实现了一套类似的界面更新的机制:即在主线程的 RunLoop 中添加一个 Observer,监听了 kCFRunLoopBeforeWaiting 和 kCFRunLoopExit 事件,在收到回调时,遍历所有之前放入队列的待处理的任务,然后一一执行。

具体的代码可以看这里:_ASAsyncTransactionGroup



转载自ibireme

推荐阅读更多精彩内容

  • Runloop是iOS和OSX开发中非常基础的一个概念,从概念开始学习。 RunLoop的概念 -般说,一个线程一...
    小猫仔阅读 277评论 0 1
  • 转载:http://www.cocoachina.com/ios/20150601/11970.html RunL...
    Gatling阅读 848评论 0 11
  • 转自http://blog.ibireme.com/2015/05/18/runloop 深入理解RunLoop ...
    飘金阅读 329评论 0 2
  • http://www.cocoachina.com/ios/20150601/11970.html RunLoop...
    紫色冰雨阅读 322评论 0 2
  • 文:安筱宸 被偷走的这五年。 昨晚凌晨三点多想到了这个话题,一时之间,脑海中出现了你很久以前的脸。我开始闭上眼睛,...
    安筱宸阅读 67评论 0 0