# VGG19 阅读

• 通过截取 vgg19 feature map 不同 size 特征段，获取多种 size 的 feature map
• 具体为 5 种 feature map size: [1, 1/2, 1/4, 1/8, 1/8]
import torch.nn as nn
from torchvision import models

class VGG19(nn.Module):
def __init__(self):
super(VGG19, self).__init__()

# 查看 vgg19 结构，得知 features 为 nn.Sequential，可用 idx 获取特定 layer 参数
features = models.vgg19(pretrained=True).features
self.to_relu_1_1 = nn.Sequential()
self.to_relu_2_1 = nn.Sequential()
self.to_relu_3_1 = nn.Sequential()
self.to_relu_4_1 = nn.Sequential()
self.to_relu_4_2 = nn.Sequential()

# 截取 vgg19 不同 feature map size 的特征段，参照下方源代码
for x in range(2):
for x in range(2, 7):
for x in range(7, 12):
for x in range(12, 21):
for x in range(21, 25):

for param in self.parameters():

def forward(self, x):
h = self.to_relu_1_1(x)
h_relu_1_1 = h
h = self.to_relu_2_1(h)
h_relu_2_1 = h
h = self.to_relu_3_1(h)
h_relu_3_1 = h
h = self.to_relu_4_1(h)
h_relu_4_1 = h
h = self.to_relu_4_2(h)
h_relu_4_2 = h
out = (h_relu_1_1, h_relu_2_1, h_relu_3_1, h_relu_4_1, h_relu_4_2)
return out   # 返回 [1, 1/2, 1/4, 1/8, 1/8] 5 种 size 的中间特征



from torchvision import models

vgg = models.vgg19(pretrained=False)
print(vgg)


VGG(

# features = models.vgg19(pretrained=True).features
# 此项为 获取的 pretrained vgg19 参数；如下注释显示 self.relu 使用的参数块
(features): Sequential(

# self.to_relu_1_1  -> 1/1
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)

# self.to_relu_2_1  -> 1/2
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)

# self.to_relu_3_1  -> 1/4
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)

# self.to_relu_4_1  -> 1/8
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU(inplace=True)
(18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)

# self.to_relu_4_2  -> 1/8
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(24): ReLU(inplace=True)

# 之后参数，没有使用
(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(26): ReLU(inplace=True)
(27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(31): ReLU(inplace=True)
(32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(33): ReLU(inplace=True)
(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(35): ReLU(inplace=True)
(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)

• 序言：七十年代末，一起剥皮案震惊了整个滨河市，随后出现的几起案子，更是在滨河造成了极大的恐慌，老刑警刘岩，带你破解...
沈念sama阅读 120,434评论 1 242
• 序言：滨河连续发生了三起死亡事件，死亡现场离奇诡异，居然都是意外死亡，警方通过查阅死者的电脑和手机，发现死者居然都...
沈念sama阅读 52,634评论 1 203
• 文/潘晓璐 我一进店门，熙熙楼的掌柜王于贵愁眉苦脸地迎上来，“玉大人，你说我怎么就摊上这事。” “怎么了？”我有些...
开封第一讲书人阅读 75,729评论 0 169
• 文/不坏的土叔 我叫张陵，是天一观的道长。 经常有香客问我，道长，这世上最难降的妖魔是什么？ 我笑而不...
开封第一讲书人阅读 36,840评论 0 128
• 正文 为了忘掉前任，我火速办了婚礼，结果婚礼上，老公的妹妹穿的比我还像新娘。我一直安慰自己，他们只是感情好，可当我...
茶点故事阅读 43,684评论 1 208
• 文/花漫 我一把揭开白布。 她就那样静静地躺着，像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上，一...
开封第一讲书人阅读 36,219评论 1 127
• 那天，我揣着相机与录音，去河边找鬼。 笑死，一个胖子当着我的面吹牛，可吹牛的内容都是我干的。 我是一名探鬼主播，决...
沈念sama阅读 28,170评论 2 210
• 文/苍兰香墨 我猛地睁开眼，长吁一口气：“原来是场噩梦啊……” “哼！你这毒妇竟也来了？” 一声冷哼从身侧响起，我...
开封第一讲书人阅读 27,284评论 0 121
• 想象着我的养父在大火中拼命挣扎，窒息，最后皮肤化为焦炭。我心中就已经是抑制不住地欢快，这就叫做以其人之道，还治其人...
爱写小说的胖达阅读 26,252评论 5 176
• 序言：老挝万荣一对情侣失踪，失踪者是张志新（化名）和其女友刘颖，没想到半个月后，有当地人在树林里发现了一具尸体，经...
沈念sama阅读 30,373评论 0 179
• 正文 独居荒郊野岭守林人离奇死亡，尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
茶点故事阅读 27,551评论 1 170
• 正文 我和宋清朗相恋三年，在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
茶点故事阅读 28,801评论 1 179
• 白月光回国，霸总把我这个替身辞退。还一脸阴沉的警告我。[不要出现在思思面前， 不然我有一百种方法让你生不如死。]我...
爱写小说的胖达阅读 23,075评论 0 25
• 序言：一个原本活蹦乱跳的男人离奇死亡，死状恐怖，灵堂内的尸体忽然破棺而出，到底是诈尸还是另有隐情，我是刑警宁泽，带...
沈念sama阅读 25,703评论 2 166
• 正文 年R本政府宣布，位于F岛的核电站，受9级特大地震影响，放射性物质发生泄漏。R本人自食恶果不足惜，却给世界环境...
茶点故事阅读 29,594评论 3 175
• 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹，春花似锦、人声如沸。这庄子的主人今日做“春日...
开封第一讲书人阅读 24,558评论 0 4
• 文/苍兰香墨 我抬头看了看天上的太阳。三九已至，却和暖如春，着一层夹袄步出监牢的瞬间，已是汗流浃背。 一阵脚步声响...
开封第一讲书人阅读 24,536评论 0 114
• 我被黑心中介骗来泰国打工， 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留，地道东北人。 一个月前我还...
沈念sama阅读 30,844评论 2 192
• 正文 我出身青楼，却偏偏与公主长得像，于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子，可洞房花烛夜当晚...
茶点故事阅读 31,209评论 2 189