数据结构--单调栈

单调栈即满足单调性的栈结构。单调栈实际上就是栈,只是利用了一些巧妙的逻辑,使得每次新元素入栈后,栈内的元素都保持有序(单调递增或单调递减)

最经典的就是 Next Greater Number 问题:
给你一个数组,返回一个等长的数组,对应索引存储着下一个更大元素,如果没有更大的元素,就存 -1。不好用语言解释清楚,直接上一个例子:

给你一个数组 [2,1,2,4,3],你返回数组 [4,2,4,-1,-1]。

解释:第一个 2 后面比 2 大的数是 4; 1 后面比 1 大的数是 2;第二个 2 后面比 2 大的数是 4; 4 后面没有比 4 大的数,填 -1;3 后面没有比 3 大的数,填 -1。

这道题的暴力解法很好想到,就是对每个元素后面都进行扫描,找到第一个更大的元素就行了。但是暴力解法的时间复杂度是 O(n^2)

在leetecode看到一个思路说的挺生动的:把数组的元素想象成并列站立的人,元素大小想象成人的身高。这些人面对你站成一列,如何求元素「2」的 Next Greater Number 呢?很简单,如果能够看到元素「2」,那么他后面可见的第一个人就是「2」的 Next Greater Number,因为比「2」小的元素身高不够,都被「2」挡住了,第一个露出来的就是答案。

image

对应的代码如下:

vector<int> nextGreaterElement(vector<int>& nums) {
    vector<int> ans(nums.size()); // 存放答案的数组
    stack<int> s;
    for (int i = nums.size() - 1; i >= 0; i--) { // 倒着往栈里放
        while (!s.empty() && s.top() <= nums[i]) { // 判定个子高矮
            s.pop(); // 矮个起开,反正也被挡着了。。。
        }
        ans[i] = s.empty() ? -1 : s.top(); // 这个元素身后的第一个高个
        s.push(nums[i]); // 进队,接受之后的身高判定吧!
    }
    return ans;
}

for 循环要从后往前扫描元素,因为我们借助的是栈的结构,倒着入栈,其实是正着出栈。while 循环是把两个“高个”元素之间的元素排除,因为他们的存在没有意义,前面挡着个“更高”的元素,所以他们不可能被作为后续进来的元素的 Next Great Number 了。

这个算法的时间复杂度不是那么直观,如果你看到 for 循环嵌套 while 循环,可能认为这个算法的复杂度也是 O(n^2),但是实际上这个算法的复杂度只有 O(n)。

分析它的时间复杂度,要从整体来看:总共有 n 个元素,每个元素都被 push 入栈了一次,而最多会被 pop 一次,没有任何冗余操作。所以总的计算规模是和元素规模 n 成正比的,也就是 O(n) 的复杂度。

[参考链接]
https://leetcode-cn.com/problems/next-greater-element-i/solution/dan-diao-zhan-jie-jue-next-greater-number-yi-lei-w/
https://oi-wiki.org/ds/monotonous-stack/
https://blog.csdn.net/qq_17550379/article/details/86519771

推荐阅读更多精彩内容