OC底层 之 方法缓存

Runtime 之 消息发送流程解析这一节已经介绍了消息发送的整个流程,过程中涉及到的方法缓存的插入,将在本节进行解析。

  • 缓存结构信息cache_t

struct cache_t {
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
/// 方法缓存数组(以散列表的形式进行存储)
    explicit_atomic<struct bucket_t *> _buckets;
/// 容量的临界值
    explicit_atomic<mask_t> _mask;
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;
    
    // How much the mask is shifted by.
    static constexpr uintptr_t maskShift = 48;
    
    // Additional bits after the mask which must be zero. msgSend
    // takes advantage of these additional bits to construct the value
    // `mask << 4` from `_maskAndBuckets` in a single instruction.
    static constexpr uintptr_t maskZeroBits = 4;
    
    // The largest mask value we can store.
    static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
    
    // The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
    static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
    
    // Ensure we have enough bits for the buckets pointer.
    static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
    // _maskAndBuckets stores the mask shift in the low 4 bits, and
    // the buckets pointer in the remainder of the value. The mask
    // shift is the value where (0xffff >> shift) produces the correct
    // mask. This is equal to 16 - log2(cache_size).
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;

    static constexpr uintptr_t maskBits = 4;
    static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
    static constexpr uintptr_t bucketsMask = ~maskMask;
#else
#error Unknown cache mask storage type.
#endif
    
#if __LP64__
    uint16_t _flags;
#endif
/// 缓存的个数
    uint16_t _occupied;

public:
    static bucket_t *emptyBuckets();
    
    struct bucket_t *buckets();
    mask_t mask();
    mask_t occupied();
    void incrementOccupied();
    void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
    void initializeToEmpty();

    unsigned capacity();
    bool isConstantEmptyCache();
    bool canBeFreed();

#if __LP64__
    bool getBit(uint16_t flags) const {
        return _flags & flags;
    }
    void setBit(uint16_t set) {
        __c11_atomic_fetch_or((_Atomic(uint16_t) *)&_flags, set, __ATOMIC_RELAXED);
    }
    void clearBit(uint16_t clear) {
        __c11_atomic_fetch_and((_Atomic(uint16_t) *)&_flags, ~clear, __ATOMIC_RELAXED);
    }
#endif

#if FAST_CACHE_ALLOC_MASK
    bool hasFastInstanceSize(size_t extra) const
    {
        if (__builtin_constant_p(extra) && extra == 0) {
            return _flags & FAST_CACHE_ALLOC_MASK16;
        }
        return _flags & FAST_CACHE_ALLOC_MASK;
    }

    size_t fastInstanceSize(size_t extra) const
    {
        ASSERT(hasFastInstanceSize(extra));

        if (__builtin_constant_p(extra) && extra == 0) {
            return _flags & FAST_CACHE_ALLOC_MASK16;
        } else {
            size_t size = _flags & FAST_CACHE_ALLOC_MASK;
            // remove the FAST_CACHE_ALLOC_DELTA16 that was added
            // by setFastInstanceSize
            return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
        }
    }

    void setFastInstanceSize(size_t newSize)
    {
        // Set during realization or construction only. No locking needed.
        uint16_t newBits = _flags & ~FAST_CACHE_ALLOC_MASK;
        uint16_t sizeBits;

        // Adding FAST_CACHE_ALLOC_DELTA16 allows for FAST_CACHE_ALLOC_MASK16
        // to yield the proper 16byte aligned allocation size with a single mask
        sizeBits = word_align(newSize) + FAST_CACHE_ALLOC_DELTA16;
        sizeBits &= FAST_CACHE_ALLOC_MASK;
        if (newSize <= sizeBits) {
            newBits |= sizeBits;
        }
        _flags = newBits;
    }
#else
    bool hasFastInstanceSize(size_t extra) const {
        return false;
    }
    size_t fastInstanceSize(size_t extra) const {
        abort();
    }
    void setFastInstanceSize(size_t extra) {
        // nothing
    }
#endif

    static size_t bytesForCapacity(uint32_t cap);
    static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);

    void reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld);
    void insert(Class cls, SEL sel, IMP imp, id receiver);

    static void bad_cache(id receiver, SEL sel, Class isa) __attribute__((noreturn, cold));
}
struct bucket_t {
private:
/// 获取方法实现
    explicit_atomic<uintptr_t> _imp;
/// 以方法名为key
    explicit_atomic<SEL> _sel;
}

通过cache_t结构,可以看出是一个典型的散列表结构

  • _buckets 用来缓存方法的散列/哈希表
  • _mask 容量的临界值(散列表长度 - 1)
  • _occupied 表示已经缓存的方法的数量
  • 消息发送过程中在lookUpImpOrForward中获取到IMP后直接跳转执行log_and_fill_cache

static void
log_and_fill_cache(Class cls, IMP imp, SEL sel, id receiver, Class implementer)
{
#if SUPPORT_MESSAGE_LOGGING
    if (slowpath(objcMsgLogEnabled && implementer)) {
        bool cacheIt = logMessageSend(implementer->isMetaClass(), 
                                      cls->nameForLogging(),
                                      implementer->nameForLogging(), 
                                      sel);
        if (!cacheIt) return;
    }
#endif
    cache_fill(cls, sel, imp, receiver);
}
  • cache_t::insert 缓存的插入和扩容等相关核心代码
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
#if CONFIG_USE_CACHE_LOCK
    cacheUpdateLock.assertLocked();
#else
    runtimeLock.assertLocked();
#endif

    ASSERT(sel != 0 && cls->isInitialized());

    // Use the cache as-is if it is less than 3/4 full
    
    // 新的已缓存方法数量
    mask_t newOccupied = occupied() + 1;
    
    /// 获取当前缓存容量
    unsigned oldCapacity = capacity(), capacity = oldCapacity;
    
    /// 如果没有缓存方法
    if (slowpath(isConstantEmptyCache())) {
        // Cache is read-only. Replace it.
        /// 当前容量为空,则重新进行初始化(4)
        if (!capacity) capacity = INIT_CACHE_SIZE;
        
        reallocate(oldCapacity, capacity, /* freeOld */false);
    }
    else if (fastpath(newOccupied <= capacity / 4 * 3)) {
        // 新的缓存容量不大于总容量的3/4,则按照原样使用,无需扩容
    }
    else {
        /// 进行扩容操作
        /// 如果旧容量存在,则进行2倍扩容,否则直接赋值(4)
        capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
        
        /// 如果新的容量超过最大容量,则直接等于最大容量(32)
        if (capacity > MAX_CACHE_SIZE) {
            capacity = MAX_CACHE_SIZE;
        }
        
        /// 进行重新赋值和释放操作
        reallocate(oldCapacity, capacity, true);
    }

    /// 获取当前缓存出数组
    bucket_t *b = buckets();
    mask_t m = capacity - 1;
    mask_t begin = cache_hash(sel, m);
    mask_t i = begin;

    // Scan for the first unused slot and insert there.
    /* There is guaranteed to be an empty slot because the
     minimum size is 4 and we resized at 3/4 full.*/
    do {
         /// 查询当前位置,如果没有缓存,则进行存储
        if (fastpath(b[i].sel() == 0)) {
            /// 缓存数量++
            incrementOccupied();

            b[i].set<Atomic, Encoded>(sel, imp, cls);
            return;
        }
        
        /// 缓存命中
        if (b[i].sel() == sel) {
            // The entry was added to the cache by some other thread
            // before we grabbed the cacheUpdateLock.
            return;
        }
    } while (fastpath((i = cache_next(i, m)) != begin));

    cache_t::bad_cache(receiver, (SEL)sel, cls);
}
  • mask_t cache_next 通过开放定址法线性探测解决哈希碰撞
static inline mask_t cache_next(mask_t i, mask_t mask) {
    return (i+1) & mask;
}
  • reallocate,在首次初始化时和扩容时进行调用
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
    /// 获取当前buckets
    bucket_t *oldBuckets = buckets();
    
    /// 开辟新的buckets空间
    bucket_t *newBuckets = allocateBuckets(newCapacity);

    // Cache's old contents are not propagated. 
    // This is thought to save cache memory at the cost of extra cache fills.
    // fixme re-measure this

    ASSERT(newCapacity > 0);
    ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);

    /// 重新设置buckets和mask值
    setBucketsAndMask(newBuckets, newCapacity - 1);
    
    if (freeOld) {
        /// 如果需要释放老的空间,则执行释放操作
        cache_collect_free(oldBuckets, oldCapacity);
    }
}
  • _mask的使用

_mask从侧面反映了cache_t中哈希桶的数量(哈希桶的数量 = _mask + 1),保
证了查找哈希桶时不会出现越界的情况 

从上面的源码分析,我们知道cache_t在任何一次缓存方法的时候,哈希桶的数量一定是 >=4且能被 4整除的,_mask则等于哈希桶的数量-1,也就是说,缓存方法的时候,_mask的二进制位上全都是1。当循环查询哈希桶的时候,索引值是由xx & _mask运算得出的,因此索引值是小于哈希桶的数量的(index <= _mask,故index < capacity),也就不会出现越界的情况
  • 为什么扩容临界点是3/4?

一般设定临界点就不得不权衡 空间利用率 和 时间利用率 。在 3/4 这个临界点的
时候,空间利用率比较高,同时又避免了相当多的哈希冲突,时间利用率也比较高。

假设两种极端情况:
当临界点是1的时候,也就是说当全部的哈希桶都缓存有方法时,才会扩容。这虽然让开辟出来的内存空间的利用率达到100%,但是会造成大量的哈希冲突,加剧了查找索引的时间成本,导致时间利用率低下,这与高速缓存的目的相悖;
当临界点是0.5的时候,意味着哈希桶的占用量达到总数一半的时候,就会扩容。这虽然极大避免了哈希冲突,时间利用率非常高,却浪费了一半的空间,使得空间利用率低下。这种以空间换取时间的做法同样不可取;
两相权衡下,当扩容临界点是3/4的时候,空间利用率 和 时间利用率 都相对比较高。
  • 总结

通过以上例子的验证、源码的分析以及问题的讨论,现在总结一下cache_t的几个结论:

cache_t能缓存调用过的方法。
cache_t的三个成员变量中,

_buckets的类型是struct bucket_t *,也就是指针数组,它表示一系列的哈希桶(已调用的方法的SEL和IMP就缓存在哈希桶中),一个桶可以缓存一个方法。
_mask的类型是mask_t(mask_t在64位架构下就是uint32_t,长度为4个字节),它的值等于哈希桶的总数-1(capacity - 1),侧面反映了哈希桶的总数。
_occupied的类型也是mask_t,它代表的是当前_buckets已缓存的方法数。


当缓存的方法数到达临界点(桶总数的3/4)时,下次再缓存新的方法时,首先会丢弃旧的桶,同时开辟新的内存,也就是扩容(扩容后都是全新的桶,以后每个方法都要重新缓存的),然后再把新的方法缓存下来,此时_occupied为1。
当多个线程同时调用一个方法时,可分以下几种情况:

多线程读缓存:读缓存由汇编实现,无锁且高效,由于并没有改变_buckets和_mask,所以并无安全隐患。
多线程写缓存:OC用了个全局的互斥锁(cacheUpdateLock.assertLocked())来保证不会出现写两次缓存的情况。
多线程读写缓存:OC使用了ldp汇编指令、编译内存屏障技术、内存垃圾回收技术等多种手段来解决多线程读写的无锁处理方案,既保证了安全,又提升了系统的性能。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,298评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,701评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 107,078评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,687评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,018评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,410评论 1 211
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,729评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,412评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,124评论 1 239
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,379评论 2 242
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,903评论 1 257
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,268评论 2 251
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,894评论 3 233
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,014评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,770评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,435评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,312评论 2 260

推荐阅读更多精彩内容