FutureTask实现原理

多线程实现方式 文中讲述了几种开启多线程的方式,每种方式都有其特定的使用场景,本文将剖析带有返回值的线程实现方式。FutureTask类关系如下:

image.png

首先看FutureTask的两个构造方法:

    //构造方法一
    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }
    //构造方法二
    public FutureTask(Runnable runnable, V result) {
        //将runnable包装成callable
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

第一个构造方法我们比较熟悉,第二个构造方法可以用 Runnable 构造 FutureTask,将 Runnable 使用适配器模式 构造成 FutureTask ,使其具有 FutureTask 的特性,如可在主线程捕获Runnable的子线程异常。

构造完FutureTask,就可以用FutureTask构造Thread,并启动线程。启动线程会调用FutureTask的run()方法,run()方法是FutureTask的实现关键:

   public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    //1、获取返回值
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    //2、FutureTask的异常处理关键
                    setException(ex);
                }
                if (ran)
                    //3、设置返回值
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }
    //异常处理
     protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = t;
            //设置为异常状态
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL);
            finishCompletion();
        }
    }
     //设置正常返回值
     protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            //设置为正常结束状态
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

在run()方法中,会调用callable对象的call()方法,并获取方法返回值,同时对call()方法中的异常进行了处理。异常时会将outcome设置为抛出的异常,正常时会将outcome设置为正常返回值,并将state设置成相应状态。

run()分析完,下一步就要分析future.get()获取线程返回结果时如何工作。

   public V get() throws InterruptedException, ExecutionException {
        int s = state;
        //未完成,则进入阻塞状态,等待完成
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);  //判断处理返回值
    }

    private V report(int s) throws ExecutionException {
        Object x = outcome;
        //根据state判断线程处理状态,并对outcome返回结果进行强转。
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x); //在主线程中抛出异常
    }

分析完run()方法和get()方法,其实对于FutureTask的返回值获取原理有了基本了解。下面继续分析其他要点:

1、线程状态

    //FutureTask定义的7种线程状态
    private volatile int state;
    private static final int NEW          = 0;
    private static final int COMPLETING   = 1; //设置返回值的过程,这个状态很短,可以划分为已完成状态。参考isDone()方法;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;
    //是否已取消
    public boolean isCancelled() {
        return state >= CANCELLED;
    }
    //是否已完成
    public boolean isDone() {
        return state != NEW;
    }

线程的状态在执行过程不同阶段不断变化,这是FutureTask的状态控制关键。注意state是volatile修饰,保障了多线程间的可见性。

2、阻塞等待
线程status为NEW和COMPLETING的时候,会进入awaitDone方法,表示要等待完成。awaitDone方法如下:

    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            //线程是否被打断
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            //已完成
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            } //正在处理返回值,这里时间很短,所以调用Thread.yield()方法,短时间的线程让步。
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null) //创建等待节点
                q = new WaitNode();
            else if (!queued) //CAS把该线程加入等待队列
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) { //超时等待
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                //阻塞一段时间
                LockSupport.parkNanos(this, nanos);
            }
            else
                //线程阻塞,等待被唤醒
                LockSupport.park(this);
        }
    }

整个awaitDone的流程,暗含很多优化逻辑,值得思考。

3、唤醒

 private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t); //唤醒线程
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

finishCompletion()会在一下三处被调用:


image.png

在任务被取消、正常完成或执行异常时会调用finishCompletion()方法,从而唤醒等待队列中的线程。

多线程系列目录(不断更新中):
线程启动原理
线程中断机制
多线程实现方式
FutureTask实现原理
线程池之ThreadPoolExecutor概述
线程池之ThreadPoolExecutor使用
线程池之ThreadPoolExecutor状态控制
线程池之ThreadPoolExecutor执行原理
线程池之ScheduledThreadPoolExecutor概述
线程池之ScheduledThreadPoolExecutor调度原理
线程池的优雅关闭实践

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,425评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,058评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,186评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,848评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,249评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,554评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,830评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,536评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,239评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,505评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,004评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,346评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,999评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,060评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,821评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,574评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,480评论 2 267

推荐阅读更多精彩内容