堆排序和优先队列

堆是一棵满足一定性质的二叉树,具体的讲堆具有如下性质:父节点的键值总是不大于它的孩子节点的键值(小顶堆), 堆可以分为小顶堆大顶堆,这里以小顶堆为例

由于二叉树良好的形态已经包含了父节点和孩子节点的关系信息,因此就可以不使用链表而简单的使用数组来存储堆。

要实现堆的基本操作,涉及到的两个关键的函数

siftUp(i, x) : 将位置i的元素x向上调整,以满足堆得性质,常常是用于insert后,用于调整堆;

siftDown(i, x):同理,常常是用于delete(i)后,用于调整堆;

具体的操作如下:

private void siftUp(int i) {

int key = nums[i];

for (; i > 0;) {

int p = (i - 1) >>> 1;

if (nums[p] <= key)

break;

nums[i] = nums[p];

i = p;

}

nums[i] = key;

}


private void siftDown(int i) {

int key = nums[i];

for (;i < nums.length / 2;) {

int child = (i << 1) + 1;

if (child + 1 < nums.length && nums[child] > nums[child+1])

child++;

if (key <= nums[child])

break;

nums[i] = nums[child];

i = child;

}

nums[i] = key;

  }

可以看到siftUp和siftDown不停的在父节点和子节点之间比较、交换;在不超过logn的时间复杂度就可以完成一次操作。

有了这两个基本的函数,就可以实现上述提及的堆的基本操作。

首先是如何建堆,实现建堆操作有两个思路:

一个是不断地insert(insert后调用的是siftUp)

另一个将原始数组当成一个需要调整的堆,然后自底向上地

在每个位置i调用siftDown(i),完成后我们就可以得到一个满足堆性质的堆。这里考虑后一种思路:

通常堆的insert操作是将元素插入到堆尾,由于新元素的插入可能违反堆的性质,因此需要调用siftUp操作自底向上调整堆;堆移除堆顶元素操作是将堆顶元素删除,然后将堆最后一个元素放置在堆顶,接着执行siftDown操作,同理替换堆顶元素也是相同的操作。

建堆


// 建立小顶堆

private void buildMinHeap(int[] nums) {

int size = nums.length;

for (int j = size / 2 - 1; j >= 0; j--)

siftDown(nums, j, size);

}

那么建堆操作的时间复杂度是多少呢?答案是O(n)。虽然siftDown的操作时间是logn,但是由于高度在递减的同时,每一层的节点数量也在成倍减少,最后通过数列错位相减可以得到时间复杂度是O(n)。

extractMin

由于堆的固有性质,堆的根便是最小的元素,因此peek操作就是返回根nums[0]元素即可;

若要将nums[0]删除,可以将末尾的元素nums[n-1]覆盖nums[0],然后将堆得size = size-1,调用siftDown(0)调整堆。时间复杂度为logn。

peek

同上

delete(i)

删除堆中位置为i的节点,涉及到两个函数siftUp和siftDown,时间复杂度为logn,具体步骤是,

将元素last覆盖元素i,然后siftDown

检查是否需要siftUp

注意到堆的删除操作,如果是删除堆的根节点,则不用考虑执行siftUp的操作;若删除的是堆的非根节点,则要视情况决定是siftDown还是siftUp操作,两个操作是互斥的。


public int delete(int i) {

int key = nums[i];

//将last元素移动过来,先siftDown; 再视情况考虑是否siftUp

int last = nums[i] = nums[size-1];

size--;

siftDown(i);

//check #i的node的键值是否确实发生改变(是否siftDown操作生效),若发生改变,则ok,否则为确保堆性质,则需要siftUp

if (i < size && nums[i] == last) {

System.out.println("delete siftUp");

siftUp(i);

}

     return key;

}

case 1 :

删除中间节点i21,将最后一个节点复制过来;

由于没有进行siftDown操作,节点i的值仍然为6,因此为确保堆的性质,执行siftUp操作;

case 2

删除中间节点i,将值为11的节点复制过来,执行siftDown操作;

由于执行siftDown操作后,节点i的值不再是11,因此就不用再执行siftUp操作了,因为堆的性质在siftDown操作生效后已经得到了保持。

可以看出,堆的基本操作都依赖于两个核心的函数siftUp和siftDown;较为完整的Heap代码如下:


class Heap {

private final static int N = 100; //default size

private int[] nums;

private int size;

public Heap(int[] nums) {

this.nums = nums;

this.size = nums.length;

heapify(this.nums);

}

public Heap() {

this.nums = new int[N];

}

/**

* heapify an array, O(n)

* @param nums An array to be heapified.

*/

private void heapify(int[] nums) {

for (int j = (size - 1) >> 1; j >= 0; j--)

siftDown(j);

}

/**

* append x to heap

* O(logn)

* @param x

* @return

*/

public int insert(int x) {

if (size >= this.nums.length)

expandSpace();

size += 1;

nums[size-1] = x;

siftUp(size-1);

return x;

}

/**

* delete an element located in i position.

* O(logn)

* @param i

* @return

*/

public int delete(int i) {

rangeCheck(i);

int key = nums[i];

//将last元素覆盖过来,先siftDown; 再视情况考虑是否siftUp;

int last = nums[i] = nums[size-1];

size--;

siftDown(i);

//check #i的node的键值是否确实发生改变,若发生改变,则ok,否则为确保堆性质,则需要siftUp;

if (i < size && nums[i] == last)

siftUp(i);

return key;

}

/**

* remove the root of heap, return it's value, and adjust heap to maintain the heap's property.

* O(logn)

* @return

*/

public int extractMin() {

rangeCheck(0);

int key = nums[0], last = nums[size-1];

nums[0] = last;

size--;

siftDown(0);

return key;

}

/**

* return an element's index, if not exists, return -1;

* O(n)

* @param x

* @return

*/

public int search(int x) {

for (int i = 0; i < size; i++)

if (nums[i] == x)

return i;

return -1;

}

/**

* return but does not remove the root of heap.

* O(1)

* @return

*/

public int peek() {

rangeCheck(0);

return nums[0];

}

private void siftUp(int i) {

int key = nums[i];

for (; i > 0;) {

int p = (i - 1) >>> 1;

if (nums[p] <= key)

break;

nums[i] = nums[p];

i = p;

}

nums[i] = key;

}

private void siftDown(int i) {

int key = nums[i];

for (;i < size / 2;) {

int child = (i << 1) + 1;

if (child + 1 < size && nums[child] > nums[child+1])

child++;

if (key <= nums[child])

break;

nums[i] = nums[child];

i = child;

}

nums[i] = key;

}

private void rangeCheck(int i) {

if (!(0 <= i && i < size))

throw new RuntimeException("Index is out of boundary");

}

private void expandSpace() {

this.nums = Arrays.copyOf(this.nums, size * 2);

}

@Override

public String toString() {

// TODO Auto-generated method stub

StringBuilder sb = new StringBuilder();

sb.append("[");

for (int i = 0; i < size; i++)

sb.append(String.format((i != 0 ? ", " : "") + "%d", nums[i]));

sb.append("]\n");

return sb.toString();

}

}

2.堆的应用:堆排序

运用堆的性质,我们可以得到一种常用的、稳定的、高效的排序算法————堆排序。堆排序的时间复杂度为O(n*log(n)),空间复杂度为O(1),堆排序的思想是:

对于含有n个元素的无序数组nums, 构建一个堆(这里是小顶堆)heap,然后执行extractMin得到最小的元素,这样执行n次得到序列就是排序好的序列。

如果是降序排列则是小顶堆;否则利用大顶堆。

Trick

由于extractMin执行完毕后,最后一个元素last已经被移动到了root,因此可以将extractMin返回的元素放置于最后,这样可以得到sort in place的堆排序算法。

具体操作如下:


int[] n = new int[] {1,9,5,6,8,3,1,2,5,9,86};

Heap h = new Heap(n);

for (int i = 0; i < n.length; i++)

n[n.length-1-i] = h.extractMin();

当然,如果不使用前面定义的heap,则可以手动写堆排序,由于堆排序设计到建堆extractMin, 两个操作都公共依赖于siftDown函数,因此我们只需要实现siftDown即可。(trick:由于建堆操作可以采用siftUp或者siftDown,而extractMin是需要siftDown操作,因此取公共部分,则采用siftDown建堆)。

这里便于和前面统一,采用小顶堆数组进行降序排列。


public void heapSort(int[] nums) {

int size = nums.length;

buildMinHeap(nums);

while (size != 0) {

// 交换堆顶和最后一个元素

int tmp = nums[0];

nums[0] = nums[size - 1];

nums[size - 1] = tmp;

size--;

siftDown(nums, 0, size);

}

}


// 建立小顶堆

private void buildMinHeap(int[] nums) {

int size = nums.length;

for (int j = size / 2 - 1; j >= 0; j--)

siftDown(nums, j, size);

}


private void siftDown(int[] nums, int i, int newSize) {

int key = nums[i];

while (i < newSize >>> 1) {

int leftChild = (i << 1) + 1;

int rightChild = leftChild + 1;

// 最小的孩子,比最小的孩子还小

int min = (rightChild >= newSize || nums[leftChild] < nums[rightChild]) ? leftChild : rightChild;

if (key <= nums[min])

break;

nums[i] = nums[min];

i = min;

}

nums[i] = key;

}

3.堆的应用:优先队列

优先队列是一种抽象的数据类型,它和堆的关系类似于,List和数组、链表的关系一样;我们常常使用堆来实现优先队列,因此很多时候堆和优先队列都很相似,它们只是概念上的区分。

优先队列的应用场景十分的广泛:

常见的应用有:

Dijkstra’s algorithm(单源最短路问题中需要在邻接表中找到某一点的最短邻接边,这可以将复杂度降低。)

Huffman coding(贪心算法的一个典型例子,采用优先队列构建最优的前缀编码树(prefixEncodeTree))

Prim’s algorithm for minimum spanning tree

Best-first search algorithms

这里简单介绍上述应用之一:Huffman coding

Huffman编码是一种变长的编码方案,对于每一个字符,所对应的二进制位串的长度是不一致的,但是遵守如下原则:

出现频率高的字符的二进制位串的长度小

不存在一个字符c的二进制位串s是除c外任意字符的二进制位串的前缀

遵守这样原则的Huffman编码属于变长编码,可以无损的压缩数据,压缩后通常可以节省20%-90%的空间,具体压缩率依赖于数据的固有结构。

Huffman编码的实现就是要找到满足这两种原则的 字符-二进制位串 对照关系,即找到最优前缀码的编码方案(前缀码:没有任何字符编码后的二进制位串是其他字符编码后位串的前缀)。

这里我们需要用到二叉树来表达最优前缀码,该树称为最优前缀码树

一棵最优前缀码树看起来像这样:

算法思想:用一个属性为freqeunce关键字的最小优先队列Q,将当前最小的两个元素x,y合并得到一个新元素z(z.frequence = x.freqeunce + y.frequence),

然后插入到优先队列中Q中,这样执行n-1次合并后,得到一棵最优前缀码树(这里不讨论算法的证明)。

一个常见的构建流程如下:

树中指向某个节点左孩子的边上表示位0,指向右孩子的边上的表示位1,这样遍历一棵最优前缀码树就可以得到对照表。


import java.util.Comparator;

import java.util.HashMap;

import java.util.Map;

import java.util.PriorityQueue;


/**

*

*                            root

*                            /   \

*                    --------- ----------

*                    |c:freq | | c:freq |

*                    --------- ----------

*

*

*/

public class HuffmanEncodeDemo {


public static void main(String[] args) {

// TODO Auto-generated method stub

Node[] n = new Node[6];

float[] freq = new float[] { 9, 5, 45, 13, 16, 12 };

char[] chs = new char[] { 'e', 'f', 'a', 'b', 'd', 'c' };

HuffmanEncodeDemo demo = new HuffmanEncodeDemo();

Node root = demo.buildPrefixEncodeTree(n, freq, chs);

Map collector = new HashMap<>();

StringBuilder sb = new StringBuilder();

demo.tranversalPrefixEncodeTree(root, collector, sb);

System.out.println(collector);

String s = "abcabcefefefeabcdbebfbebfbabc";

StringBuilder sb1 = new StringBuilder();

for (char c : s.toCharArray()) {

sb1.append(collector.get(c));

}

System.out.println(sb1.toString());

}


public Node buildPrefixEncodeTree(Node[] n, float[] freq, char[] chs) {

PriorityQueue pQ = new PriorityQueue<>(new Comparator() {

public int compare(Node o1, Node o2) {

return o1.item.freq > o2.item.freq ? 1 : o1.item.freq == o2.item.freq ? 0 : -1;

};

});

Node e = null;

for (int i = 0; i < chs.length; i++) {

n[i] = e = new Node(null, null, new Item(chs[i], freq[i]));

pQ.add(e);

}


for (int i = 0; i < n.length - 1; i++) {

Node x = pQ.poll(), y = pQ.poll();

Node z = new Node(x, y, new Item('$', x.item.freq + y.item.freq));

pQ.add(z);

}

return pQ.poll();

}

/**

* tranversal  

* @param root

* @param collector

* @param sb

*/

public void tranversalPrefixEncodeTree(Node root, Map collector, StringBuilder sb) {

// leaf node

if (root.left == null && root.right == null) {

collector.put(root.item.c, sb.toString());

return;

}

Node left = root.left, right = root.right;

tranversalPrefixEncodeTree(left, collector, sb.append(0));

sb.delete(sb.length() - 1, sb.length());

tranversalPrefixEncodeTree(right, collector, sb.append(1));

sb.delete(sb.length() - 1, sb.length());

}

}


class Node {

public Node left, right;

public Item item;


public Node(Node left, Node right, Item item) {

super();

this.left = left;

this.right = right;

this.item = item;

}


}


class Item {

public char c;

public float freq;


public Item(char c, float freq) {

super();

this.c = c;

this.freq = freq;

}

}

输出如下:

1

2

{a=0, b=101, c=100, d=111, e=1101, f=1100}

010110001011001101110011011100110111001101010110011110111011011100101110110111001010101100

4 堆的应用:海量实数中(一亿级别以上)找到TopK(一万级别以下)的数集合。

A:通常遇到找一个集合中的TopK问题,想到的便是排序,因为常见的排序算法例如快排算是比较快了,然后再取出K个TopK数,时间复杂度为O(nlogn),当n很大的时候这个时间复杂度还是很大的;

B:另一种思路就是打擂台的方式,每个元素与K个待选元素比较一次,时间复杂度很高:O(k*n),此方案明显逊色于前者。

对于一亿数据来说,A方案大约是26.575424*n;

C:由于我们只需要TopK,因此不需要对所有数据进行排序,可以利用堆得思想,维护一个大小为K的小顶堆,然后依次遍历每个元素e, 若元素e大于堆顶元素root,则删除root,将e放在堆顶,然后调整,时间复杂度为logK;若小于或等于,则考察下一个元素。这样遍历一遍后,最小堆里面保留的数就是我们要找的topK,整体时间复杂度为O(k+n*logk)约等于O(n*logk),大约是13.287712*n(由于k与n数量级差太多),这样时间复杂度下降了约一半。

A、B、C三个方案中,C通常是优于B的,因为logK通常是小于k的,当K和n的数量级相差越大,这种方式越有效。

以下为具体操作:


import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;

import java.util.Arrays;

import java.util.Scanner;

import java.util.Set;

import java.util.TreeSet;

public class TopKNumbersInMassiveNumbersDemo {


public static void main(String[] args) {

// TODO Auto-generated method stub

int[] topK = new int[]{50001,50002,50003,50004,50005};

genData(1000 * 1000 * 1000, 500, topK);

long t = System.currentTimeMillis();

findTopK(topK.length);

System.out.println(String.format("cost:%fs", (System.currentTimeMillis() - t) * 1.0 / 1000));

}

public static void genData(int N, int maxRandomNumer, int[] topK) {

File f = new File("data.txt");

int k = topK.length;

Set index = new TreeSet<>();

for (;;) {

index.add((int)(Math.random() * N));

if (index.size() == k)

break;

}

System.out.println(index);

int j = 0;

try {

PrintWriter pW = new PrintWriter(f, "UTF-8");

for (int i = 0; i < N; i++)

if(!index.contains(i))

pW.println((int)(Math.random() * maxRandomNumer));

else

pW.println(topK[j++]);

pW.flush();

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (UnsupportedEncodingException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

public static void findTopK(int k) {

int[] nums = new int[k];

//read

File f = new File("data.txt");

try {

Scanner scanner = new Scanner(f);

for (int j = 0;j < k; j++)

nums[j] = scanner.nextInt();

heapify(nums);

//core

while (scanner.hasNextInt()) {

int a = scanner.nextInt();

if (a <= nums[0])

continue;

else {

nums[0] = a;

siftDown(0, k, nums);

}

}

System.out.println(Arrays.toString(nums));

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

//O(n), minimal heap

public static void heapify(int[] nums) {

int size = nums.length;

for (int j = (size - 1) >> 1; j >= 0; j--)

siftDown(j, size, nums);

}

private static void siftDown(int i, int n, int[] nums) {

int key = nums[i];

for (;i < (n >>> 1);) {

int child = (i << 1) + 1;

if (child + 1 < n && nums[child] > nums[child+1])

child++;

if (key <= nums[child])

break;

nums[i] = nums[child];

i = child;

}

nums[i] = key;

}

}

ps:大致测试了一下,10亿个数中找到top5需要140秒左右,应该是很快了。

5 总结

堆是基于树的满足一定约束的重要数据结构,存在许多变体例如二叉堆、二项式堆、斐波那契堆(很高效)等。

堆的几个基本操作都依赖于两个重要的函数siftUp和siftDown,堆的insert通常是在堆尾插入新元素并siftUp调整堆,而extractMin是在

删除堆顶元素,然后将最后一个元素放置堆顶并调用siftDown调整堆。

二叉堆是常用的一种堆,其是一棵二叉树;由于二叉树良好的性质,因此常常采用数组来存储堆。

堆得基本操作的时间复杂度如下表所示:

heapifyinsertpeekextractMindelete(i)

O(n)O(logn)O(1)O(logn)O(logn)

二叉堆通常被用来实现堆排序算法,堆排序可以sort in place,堆排序的时间复杂度的上界是O(nlogn),是一种很优秀的排序算法。由于存在相同键值的两个元素处于两棵子树中,而两个元素的顺序可能会在后续的堆调整中发生改变,因此堆排序不是稳定的。降序排序需要建立小顶堆,升序排序需要建立大顶堆。

堆是实现抽象数据类型优先队列的一种方式,优先队列有很广泛的应用,例如Huffman编码中使用优先队列利用贪心算法构建最优前缀编码树。

堆的另一个应用就是在海量数据中找到TopK个数,思想是维护一个大小为K的二叉堆,然后不断地比较堆顶元素,判断是否需要执行替换对顶元素的操作,采用

此方法的时间复杂度为n*logk,当k和n的数量级差距很大的时候,这种方式是很有效的方法。

推荐阅读更多精彩内容