梯度下降和上升

在介绍梯度概念之前,首先需要引入偏导数和方向偏导数的概念,

偏导数:

所谓偏导数,简单来说是对于一个多元函数,选定一个自变量并让其他自变量保持不变,只考察因变量与选定自变量的变化关系。

数学上说,是指对于多元函数y=f(x_1,x_2,...x_n),假设其偏导数都存在,则该函数共有n个偏导数,可以表示为:

 {f_{{x_1}}} = {{\partial y} over {\partial {x_1}}},

{f_{{x_2}}} = {{\partial y} over {\partial {x_2}}}...

{f_{{x_n}}} = {{\partial y} over {\partial {x_n}}}

因此,偏导数只能表示多元函数沿某个坐标轴方向的导数

如对于二元函数z=x^2+y^2 ,{{partial z} over {partial x}} = 2x表示函数沿X轴方向的导数,

而{{partial z} over {partial y}} = 2y表示函数沿Y轴方向的导数。

方向导数:

除开沿坐标轴方向上的导数,多元函数在非坐标轴方向上也可以求导数,这种导数称为方向导数。

因此,多元函数在特定点的方向导数有无穷多个,表示函数值在各个方向上的增长速度。

在这些方向导数中,是否存在一个最大的方向导数,如果有,其值是否唯一?为了回答这个问题,便需要引入梯度的概念。

梯度:

一般来说,梯度可以定义为一个函数的全部偏导数构成的向量(这一点与偏导数与方向导数不同,两者都为标量)。即梯度是一个包含了各个维度的沿坐标轴方向的导数(偏导数)的集合向量。

梯度向量的方向:

事实上,梯度向量的方向即为函数值增长最快的方向,为什么会如此,可以从几个角度去理解。

e.g.

为了找到方向导数中的最大值,我们可以一个三维图像将其投影到xy(两维)平面来理解,这种投影方式对应的便是等高线图。如对于一个二元函数z=f(x,y),我们可以画出它的等高线图如下:

该函数的等高线图为圆心在原点的一系列圆,等高线的值由里向外逐渐增加。点B(x,y)为点(x,y,z)在xy平面上的投影,可以看到向量vec{AB} 即为函数在点(x,y,z)处的梯度向量。根据方向导数的定义,方向导数{D_u}f = {f_x}\cos (theta) + {f_y}\sin (theta) ,其中theta 为此向量与X正方向的夹角。由于梯度向量为u = ({f_x},{f_y}),单位向量w = (1\cos (theta) ,1\sin (theta ),则方向导数的大小可以表述为梯度向量与此单位向量的数量积:

{D_u}f = {f_x}\cos (theta) + {f_y}\sin (theta)

= vec u  cdot (vec w)

= |u| cdot (|w|) cdot cos (alpha)

= |u| cdot cos (alpha)

其中alpha 为梯度向量与单位向量之间的夹角, cdot: 点乘

可以看出,方向导数的大小可以看作梯度向量在指示方向导数方向的单位向量上的投影,即线段AE的长度

显而易见,线段AE的长度小于线段AB的长度,也即梯度向量的模总是大于等于方向导数向量的模。这就解释了为什么沿着梯度向量方向是函数值增长最快的方向,而它正是函数所有偏导数构成的向量。

梯度下降和上升:

我们可以两个角度考虑:第一,在特定函数点,固定每次移动的步长,向那个方向移动函数值增长最快?第二,固定需要增加的函数值,向哪个方向需要移动的步长最短?


在左图中,固定移动的步长,我们可以看到垂直于等高线图的方向即为函数值增长最快的方向,也就是梯度向量指示的方向。在右图中,假设函数值有一个固定的微小的增长,则明显梯度向量指示的方向所需要的步长最短,而这个向量也是垂直于等高线的。

梯度下降或上升法正是基于梯度指示函数值增长最快的方向而产生的,利用这个方法,我们可以使用迭代的方法计算函数的最大或最小值,从而解决机器学习中遇到的最优化问题。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,233评论 4 360
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,013评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,030评论 0 241
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,827评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,221评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,542评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,814评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,513评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,225评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,497评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,998评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,342评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,986评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,055评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,812评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,560评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,461评论 2 266

推荐阅读更多精彩内容