传统机器学习算法(一)

本章节主要介绍机器学习传统算法的监督学习部分。监督学习算法主要解决回归和分类两大问题。只能做回归的算法是线性回归,只能做分类的算法是逻辑回归和贝叶斯分类。其他的算法既可以做回归又可以做分类。

1. 线性回归(Linear Regression)

线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可。

1.1 线性回归分类

(1) 单变量回归

我们能够给出单变量线性回归的模型:

我们需要使用到Cost Function(代价函数),代价函数越小,说明线性回归地越好(和训练集拟合地越好),当然最小就是0,即完全拟合。

(2) 多变量回归

多变量线性回归之前必须要Feature Scaling。思想:将各个feature的值标准化,使得取值范围大致都在-1<=x<=1之间。

这里我们可以定义出多变量线性回归的模型:

1.2 求拟合方程方法

(1) 最小二乘法

“最小二乘法”的核心就是保证所有数据偏差的平方和最小。(“平方”的在古时侯的称谓为“二乘”)。

(2) 岭回归

岭回归(Ridge Regression)是在平方误差的基础上增加正则项。通过确定lamda的值可以使得在方差和偏差之间达到平衡。

岭回归优于最小二乘回归的原因在于方差-偏倚选择。随着lambda的增大,模型方差减小而偏倚(轻微的)增加。

岭回归的一个缺点:在建模时,同时引入p个预测变量,罚约束项可以收缩这些预测变量的待估系数接近0,但并非恰好是0(除非lambda为无穷大)。这个缺点对于模型精度影响不大,但给模型的解释造成了困难。这个缺点可以由lasso来克服。(所以岭回归虽然减少了模型的复杂度,并没有真正解决变量选择的问题)

(3) Lasso回归

lasso是在RSS最小化(Residual Sum of Squares)的计算中加入一个l1范数作为罚约束:

l1范数的好处是当lambda充分大时可以把某些待估系数精确地收缩到0。

2. 逻辑回归(Logistic Regression)

(1 ) 逻辑回归模型

简单来说线性回归就是直接将特征值和其对应的概率进行相乘得到一个结果,逻辑回归则是这样的结果上加上一个逻辑函数,这里选用的就是Sigmoid函数。逻辑回归分为二分类和多分类。

假设我们的样本是{x, y},y是0或者1,表示正类或者负类,x是我们的m维的样本特征向量。那么这个样本x属于正类,也就是y=1的“概率”可以通过下面的逻辑函数来表示:

所以说上面的logistic回归就是一个线性分类模型,它与线性回归的不同点在于:为了将线性回归输出的很大范围的数,例如从负无穷到正无穷,压缩到0和1之间,这样的输出值表达为“可能性”才能说服广大民众。当然了,把大值压缩到这个范围还有个很好的好处,就是可以消除特别冒尖的变量的影响(不知道理解的是否正确)。而实现这个伟大的功能其实就只需要平凡一举,也就是在输出加一个logistic函数。另外,对于二分类来说,可以简单的认为:如果样本x属于正类的概率大于0.5,那么就判定它是正类,否则就是负类。

所以说,LogisticRegression 就是一个被logistic方程归一化后的线性回归,仅此而已。

(2) 代价函数

那代价函数有了,我们下一步要做的就是优化求解了。我们先尝试对上面的代价函数求导,看导数为0的时候可不可以解出来,也就是有没有解析解,有这个解的时候,就皆大欢喜了,一步到位。如果没有就需要通过迭代了,耗时耗力。

我们先变换下L(θ):取自然对数,然后化简(不要看到一堆公式就害怕哦,很简单的哦,只需要耐心一点点,自己动手推推就知道了。注:有xi的时候,表示它是第i个样本,下面没有做区分了,相信你的眼睛是雪亮的),得到:

然后我们令该导数为0,你会很失望的发现,它无法解析求解。不信你就去尝试一下。所以没办法了,只能借助高大上的迭代来搞定了。运用用了经典的梯度下降算法就可以了。

3. 贝叶斯分类(Bayes Classification)

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。

(1) 贝叶斯定理

这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

(2) 朴素贝叶斯分类

朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

4. 决策树(Decision Tree)

决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有两大优点:1)决策树模型可以读性好,具有描述性,有助于人工分析;2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。

决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

4.1 决策树的构造

不同于贝叶斯算法,决策树的构造过程不依赖领域知识,它使用属性选择度量来选择将元组最好地划分成不同的类的属性。所谓决策树的构造就是进行属性选择度量确定各个特征属性之间的拓扑结构。

构造决策树的关键步骤是分裂属性。所谓分裂属性就是在某个节点处按照某一特征属性的不同划分构造不同的分支,其目标是让各个分裂子集尽可能地“纯”。尽可能“纯”就是尽量让一个分裂子集中待分类项属于同一类别。分裂属性分为三种不同的情况:

1、属性是离散值且不要求生成二叉决策树。此时用属性的每一个划分作为一个分支。

2、属性是离散值且要求生成二叉决策树。此时使用属性划分的一个子集进行测试,按照“属于此子集”和“不属于此子集”分成两个分支。

3、属性是连续值。此时确定一个值作为分裂点split_point,按照>split_point和<=split_point生成两个分支。

构造决策树的关键性内容是进行属性选择度量,属性选择度量是一种选择分裂准则,是将给定的类标记的训练集合的数据划分D“最好”地分成个体类的启发式方法,它决定了拓扑结构及分裂点split_point的选择。

属性选择度量算法有很多,一般使用自顶向下递归分治法,并采用不回溯的贪心策略。这里介绍ID3C4.5两种常用算法。

4.2  量化纯度

4.3 停止条件

决策树的构建过程是一个递归的过程,所以需要确定停止条件,否则过程将不会结束。一种最直观的方式是当每个子节点只有一种类型的记录时停止,但是这样往往会使得树的节点过多,导致过拟合问题(Overfitting)。另一种可行的方法是当前节点中的记录数低于一个最小的阀值,那么就停止分割,将max(P(i))对应的分类作为当前叶节点的分类。

4.4 优化方案

采用上面算法生成的决策树在事件中往往会导致过滤拟合。也就是该决策树对训练数据可以得到很低的错误率,但是运用到测试数据上却得到非常高的错误率。过渡拟合的原因有以下几点:

(1) 修剪枝叶

决策树过渡拟合往往是因为太过“茂盛”,也就是节点过多,所以需要裁剪(Prune Tree)枝叶。裁剪枝叶的策略对决策树正确率的影响很大。主要有两种裁剪策略。

前置裁剪在构建决策树的过程时,提前停止。那么,会将切分节点的条件设置的很苛刻,导致决策树很短小。结果就是决策树无法达到最优。实践证明这中策略无法得到较好的结果。

后置裁剪决策树构建好后,然后才开始裁剪。采用两种方法:1)用单一叶节点代替整个子树,叶节点的分类采用子树中最主要的分类;2)将一个子树完全替代另外一颗子树。后置裁剪有个问题就是计算效率,有些节点计算后就被裁剪了,导致有点浪费。

(2) K-Fold Cross Validation

首先计算出整体的决策树T,叶节点个数记作N,设i属于[1,N]。对每个i,使用K-Fold Cross Validation方法计算决策树,并裁剪到i个节点,计算错误率,最后求出平均错误率。这样可以用具有最小错误率对应的i作为最终决策树的大小,对原始决策树进行裁剪,得到最优决策树。

(3) Random Forest

Random Forest是用训练数据随机的计算出许多决策树,形成了一个森林。然后用这个森林对未知数据进行预测,选取投票最多的分类。实践证明,此算法的错误率得到了经一步的降低。这种方法背后的原理可以用“三个臭皮匠定一个诸葛亮”这句谚语来概括。一颗树预测正确的概率可能不高,但是集体预测正确的概率却很高。

5. K最近邻法(KNN)

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比(组合函数)。

该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

K-NN可以说是一种最直接的用来分类未知数据的方法。基本通过下面这张图跟文字说明就可以明白K-NN是干什么的。

简单来说,K-NN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑离这个训练数据最近的K个点看看这几个点属于什么类型,然后用少数服从多数的原则,给新数据归类。

6. 支持向量机( SVM)

6.1 SVM原理

SVM从线性可分情况下的最优分类面发展而来。最优分类面就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。SVM考虑寻找一个满足分类要求的超平面,并且使训练集中的点距离分类面尽可能的远,也就是寻找一个分类面使它两侧的空白区域(margin)最大。

过两类样本中离分类面最近的点且平行于最优分类面的超平面上H1,H2的训练样本就叫做支持向量。

6.2 核函数

看一个例子来知道核函数是干什么用的。

故事是这样子的:在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”

一般用线性核和高斯核,也就是Linear核与RBF核

需要注意的是需要对数据归一化处理,很多使用者忘了这个小细节

然后一般情况下RBF效果是不会差于Linear

但是时间上RBF会耗费更多,其他同学也解释过了

下面是吴恩达的见解:

1. 如果Feature的数量很大,跟样本数量差不多,这时候选用LR或者是Linear Kernel的SVM

2. 如果Feature的数量比较小,样本数量一般,不算大也不算小,选用SVM+Gaussian Kernel

3. 如果Feature的数量比较小,而样本数量很多,需要手工添加一些feature变成第一种情况

6.3 松弛变量

如果两个分类样本有重叠,如下图:

这时候可以考虑采取松弛变量 。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。Adaboost算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次得到的分类器最后融合起来,作为最后的决策分类器。

7.1 算法概述

1、先通过对N个训练样本的学习得到第一个弱分类器;

2、将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器;

3、将1和2都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器

4、最终经过提升的强分类器。即某个数据被分为哪一类要由各分类器权值决定。

7.2 Adaboost算法的基本思路

7.3 示例

每个区域是属于哪个属性,由这个区域所在分类器的权值综合决定。比如左下角的区域,属于蓝色分类区的权重为h1 中的0.42和h2 中的0.65,其和为1.07;属于淡红色分类区域的权重为h3 中的0.92;属于淡红色分类区的权重小于属于蓝色分类区的权值,因此左下角属于蓝色分类区。因此可以得到整合的结果如上图所示,从结果图中看,即使是简单的分类器,组合起来也能获得很好的分类效果。

7.4 分类器权值调整的原因

由公式可以看到,权值是关于误差的表达式。每次迭代都会提高错分点的权值,当下一次分类器再次错分这些点之后,会提高整体的错误率,这样就导致分类器权值变小,进而导致这个分类器在最终的混合分类器中的权值变小,也就是说,Adaboost算法让正确率高的分类器占整体的权值更高,让正确率低的分类器权值更低,从而提高最终分类器的正确率。

7.5 优缺点分析

优点:

1)Adaboost是一种有很高精度的分类器

2)可以使用各种方法构建子分类器,Adaboost算法提供的是框架

3)当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单

4)简单,不用做特征筛选

5)不用担心overfitting(过度拟合)

缺点:

1)容易受到噪声干扰,这也是大部分算法的缺点

2)训练时间过长

3)执行效果依赖于弱分类器的选择

推荐阅读更多精彩内容