Python——ndarray多维数组基本操作(3)

1.使用数组进行文件输入与输出:

  • save()方法用于将数组存储到硬盘中,默认情况是以未压缩的格式进行存储,.npy格式。
    np.savce('file_name',arr)
    load()方法用于将数组从硬盘中载入。
    np.load('file_name.npy')

  • 另外,可以使用savez()方法,用于保存多个数组。
    np.savez('file_name.npz',x=arr1,y=arr2)
    此时,载入文件时,得到一个字典型对象:

arch = np.load('file_name.npz')
# 查看x
arch['x']

2.线性代数函数:

函数 说明
diag() 将一个矩阵的对角(或非对角)元素作为一维数组返回,或者将一维数组转换成一个方阵,并且在非对角线上有零点
dot() 矩阵点乘
trace() 计算对角元素和
det() 计算矩阵的行列式
eig() 计算方阵的特征值和特征向量
inv() 计算方阵的逆矩阵
pinv() 计算矩阵的Moore-Penrose伪逆
qr() 计算QR分解
svd() 计算奇异值分解(SVD)
solve() 求解x的线性系统Ax=b(A为方阵)
lstsq 计算x的线性系统Ax=b的最小二乘解

3.伪随机数生成:

Numpy中的random模块可以很方便的生成多种概率分布下的数组。

函数 说明
seed() 向随机数生成器传递随机种子
permutation() 返回一个序列的随机排列,或者返回一个乱序的整数范围序列
shuffle() 随机排列一个序列
rand() 从均匀分布中抽取样本
randint() 根据给定值,从低到高抽取随机整数
randn() 从均值为0方差为1的正态分布中抽取样本
binomial() 从二项分布中抽取样本
normal() 从正态高斯分布中抽取样本
beta() 从beta分布中抽取样本
chisquare() 从卡方分布中抽取样本
gamma() 从伽马分布中抽取样本
uniform() 从均匀[0,1)分布总抽取样本

Reference:
《Python for Data Analysis:Data Wrangling with Pandas,Numpy,and IPython》

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 151,511评论 1 330
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 64,495评论 1 273
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 101,595评论 0 225
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 42,558评论 0 190
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 50,715评论 3 270
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 39,672评论 1 192
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,112评论 2 291
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 29,837评论 0 181
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 33,417评论 0 228
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 29,928评论 2 232
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,316评论 1 242
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 27,773评论 2 234
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,253评论 3 220
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 25,827评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,440评论 0 180
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 34,523评论 2 249
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 34,583评论 2 249

推荐阅读更多精彩内容