Android性能优化第(一)篇---基本概念

最近打算总结几篇app性能优化方面的东西,毕竟android弄了这么久,万一到哪些转了行,岁月久了就忘记了,纯粹当个人笔记。今个是第一篇---性能优化的基本概念,毛主席说了,让理论先行,理论指导实践。性能优化的重要性不想再强调,我是个新手,要开始开车了,阅读本文你会弄清楚或者再次回顾以下问题。

  • 1、java的内存区域如何划分?
  • 2、java中的引用有哪些?如何运用?
  • 3、什么是内存泄露?内存泄露发生的场景有哪些?
  • 4、Garbage Collector(垃圾回收器)什么是垃圾,什么是非垃圾?

看到这,如果你觉得有必要了解一下,请往下读,否则press back key!!!

问题1、java的内存区域如何划分?

有两种说法:
一种说法是分为: 堆(Heap),栈(Stacks)方法区(MethodArea),运行时常量池(RuntimeConstant Pool),本地方法栈(NativeMethod Stacks),PC Register(PC寄存器)。是从抽象的JVM的角度去看的。
另一种说法是分为:堆(Heap),栈(Stacks),数据段(data segment),代码段(code segment)。则是从操作系统上的进程的角度去看的。

我们按照第一种说法简单看一下。

java内存划分.png

Heap/Stack
在这问题中,我们主要要弄清楚,什么是堆,什么是栈,堆栈内存有什么区别?

  • Heap内存的分配也叫做动态内存分配,java中运行环境用来分配给对象和JRE类的内存都在堆内存,C/C++有时候可以用malloc或者new来申请分配一个内存。在C/C++可能需要自己负责释放(java里面直接依赖GC机制)。
  • Stack内存是相对于线程Thread而言的, 在执行函数(方法)时,函数一些内部变量的存储都可以放在栈上面创建,函数执行结束的时候这些存储单元就会自动被释放掉。栈内存包括分配的运算速度很快,因为内置在处理器的里面的。当然容量有限。它保存线程中方法中短期存在的变量值和对Heap中对象的引用等.

区别:堆是不连续的内存区域,堆空间比较灵活也特别大。 栈式一块连续的内存区域,大小是有操作系统觉决定的。堆管理很麻烦,频繁地new/remove会造成大量的内存碎片,这样就会慢慢导致效率低下。对于栈的话,他先进后出,进出完全不会产生碎片,运行效率高且稳定。

我们通常说的内存泄露,GC,是针对Heap内存的. 因为Stack内存在函数出栈的时候就销毁了。
比如说这个类

public class People{
    int a = 1;
    Student s1 = new Student();
    public void XXX(){
        int b = 1;
        Student s2 = new Student();
    }
}

请问a的内存在哪里,b的内存在哪里,s1,s2的内存在哪里?记住下面两句话。

  • 成员变量全部存储在堆中(包括基本数据类型,引用及引用的对象实体),因为他们属于类,类对象最终还是要被new出来的。
  • 局部变量的基本数据类型和引用存储于栈当中,引用的对象实体存储在堆中。因为他们属于方法当中的变量,生命周期会随着方法一起结束。

所以答案就是a,s1,s2对象都堆中,b和s2对象引用在栈中。

问题2、java中的引用有哪些?如何运用?

从JDK1.2版本开始,把对象的引用分为四种级别,从而使程序能更加灵活的控制对象的生命周期。这四种级别由高到低依次为:强引用、软引用、弱引用和虚引用。

  • **强引用(StrongReference) ** 我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。
  • **软引用(SoftReference) ** 如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。
  • 弱引用(WeakReference) 在垃圾回收器线程扫描它 所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。 弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。
  • **虚引用(PhantomReference) ** 如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。虚 引用主要用来跟踪对象被垃圾回收的活动。虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列(ReferenceQueue)联合使用。当垃 圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是 否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
public class Demo1 {
    public static void main(String[] args) {
        //这就是一个强引用
        String str="hello"; 
        //现在我们由上面的强引用创建一个软引用,所以现在str有两个引用指向它
        SoftReference<String>  soft=new SoftReference<String>(str);     
        str=null;
        //可以使用get()得到引用指向的对象
        System.out.println(soft.get());//输出hello
        
    }
}
public class Demo2 {
    public static void main(String[] args) {
        //这就是一个强引用
        String str="hello"; 
        ReferenceQueue<? super String> q=new ReferenceQueue<String>();
        //现在我们由上面的强引用创建一个虚引用,所以现在str有两个引用指向它
        PhantomReference<String>  p=new PhantomReference<String>(str, q);
        //可以使用get()得到引用指向的对象
        System.out.println(q.poll());//输出null
    }
}

下面再看一个,首先创建一个Store类,内部定义一个很大的数组,目的是创建对象时,会得到更多的内存,以提高回收的可能性!

public class Store {

    public static final int SIZE = 10000;
    private double[] arr = new double[SIZE];
    private String id;

    public Store() {

    }

    public Store(String id) {
        super();
        this.id = id;
    }

    @Override
    protected void finalize() throws Throwable {
        System.out.println(id + "被回收了");
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    @Override
    public String toString() {
        return id;
    }

}

依次创建软引用,弱引用,虚引用个10个!


public class Demo3 {
    
    public static ReferenceQueue<Store> queue = new ReferenceQueue<Store>();

    public static void checkQueue()
    {
        if(queue!=null)
        {
            @SuppressWarnings("unchecked")
            Reference<Store>  ref =(Reference<Store>)queue.poll();
            if(ref!=null)
                 System.out.println(ref+"......"+ref.get());
        }
    }
    
    public static void main(String[] args) {
        
        HashSet<SoftReference<Store>> hs1 = new HashSet<SoftReference<Store>>();
        HashSet<WeakReference<Store>> hs2 = new HashSet<WeakReference<Store>>();
        
        //创建10个软引用
        for(int i=1;i<=10;i++)
        {
            SoftReference<Store> soft = new SoftReference<Store>(new Store("soft"+i),queue);
            System.out.println("create soft"+soft.get());
            hs1.add(soft);
        }
        System.gc();
        checkQueue();
        
        //创建10个弱引用
        for(int i=1;i<=10;i++)
        {
            WeakReference<Store> weak = new WeakReference<Store>(new Store("weak"+i),queue);
            System.out.println("create weak"+weak.get());
            hs2.add(weak);
        }
        
        System.gc();
        checkQueue();
        //创建10个虚引用
        HashSet<PhantomReference<Store>> hs3 = new HashSet<PhantomReference<Store>>();
        for(int i=1;i<=10;i++)
        {
            PhantomReference<Store> phantom = new PhantomReference<Store>(new Store("phantom"+i),queue);
            System.out.println("create phantom  "+phantom.get());
            hs3.add(phantom);
        }
        System.gc();
        checkQueue();           
    }
}

程序执行结果:

输出结果.png

在Handler中或者图片的三级缓存是不是经常会有虚引用出现呢,所以,java四大引用还是了解一下为好。

问题3、什么是内存泄露?内存泄露发生的场景有哪些?

当一个对象已经不需要再使用了,本该被回收时,而有另外一个正在使用的对象持有它的引用,从而就导致对象不能被回收。这种导致了本该被回收的对象不能被回收而停留在堆内存中,就产生了内存泄漏。内存泄露问题,在下篇博客中会详细介绍把内存泄露抓出来。
内存泄露的场景有很多。

  • 非静态内部类的静态实例
    由于内部类默认持有外部类的引用,而静态实例属于类。所以,当外部类被销毁时,内部类仍然持有外部类的引用,致使外部类无法被GC回收。因此造成内存泄露。

  • 类的静态变量持有大数据对象
    静态变量长期维持到大数据对象的引用,阻止垃圾回收。

  • 资源对象未关闭
    资源性对象如Cursor、Stream、Socket,Bitmap,应该在使用后及时关闭。未在finally中关闭,会导致异常情况下资源对象未被释放的隐患。

  • 注册对象未反注册
    我们常常写很多的Listener,未反注册会导致观察者列表里维持着对象的引用,阻止垃圾回收。

  • Handler临时性内存泄露
    Handler通过发送Message与主线程交互,Message发出之后是存储在MessageQueue中的,有些Message也不是马上就被处理的。
    -Context泄露
    这个太多了,不细说,单利模式写的不恰当就属于这种。

场景还有很多,我水平有限,最好记住这些常见的场景,在一开始写代码的时候,就要规避这些问题。记不住也不要紧,我们关键要学会怎么去解决内存泄露。

问题4、Garbage Collector(垃圾回收器)什么是垃圾,什么是非垃圾?
  • 什么是GC?
    GC 是 garbage collection 的缩写, 垃圾回收的意思. 也可以是 Garbage Collector, 也就是垃圾回收器.

垃圾回收机制有好几套算法,java语言规范没有明确的说明JVM 使用哪种垃圾回收算法,但是任何一种垃圾回收算法一般要做两件基本事情:(1)发现无用的信息对象;(2)回收将无用对象占用的内存空间。使该空间可被程序再次使用。

有一种算法是根搜索算法

Tracing Collector.jpg

根搜索算法是从离散数学中的图论引入的,程序把所有的引用关系看作一张图,从一个节点GC ROOT开始,寻找对应的引用节点,找到这个节点以后,继续寻找这个节点的引用节点,当所有的引用节点寻找完毕之后,剩余的节点则被认为是没有被引用到的节点,即无用的节点。如果这个对象是引用可达的, 则称之为活的(live), 反之, 如果这个对象引用不可达, 则称之为死的(dead), 也可以称之为垃圾(garbage).这个引用可达与不可达就是相对于GC Root来说的,在上图中,左边4个对象就是活的,右边两个就是死的,也就是我们说的可以被回收的垃圾。

OK,到此为止,下篇介绍内存泄露检测工具Android monitor。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,425评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,058评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,186评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,848评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,249评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,554评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,830评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,536评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,239评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,505评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,004评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,346评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,999评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,060评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,821评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,574评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,480评论 2 267

推荐阅读更多精彩内容