JVM垃圾回收算法和垃圾收集器

通过上篇文章JVM垃圾回收与对象状态我们知道对象在什么情况下会成为垃圾在确定了这些垃圾后,JVM要做的事情就是开始进行垃圾回收。

垃圾收集算法

在JVM规范中并没有明确GC的运作方式,各个厂商可以采用不同的方式去实现垃圾回收器。这里讨论几种常见的GC算法。

1.Mark-Sweep(标记-清除)算法

这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:

989246-20170406161514082-1220415753.jpg

它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

2.Copying(复制)算法

为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。具体过程如下图所示:

181041528488728.jpg

这种算法虽然实现简单,运行高效且不容易产生内存碎片,但是却对内存空间的使用做出了高昂的代价,因为能够使用的内存缩减到原来的一半。

很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。

3.Mark-Compact(标记-整理)算法

为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:

181100129575916.jpg

4.Generational Collection(分代收集)算法

分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。

目前大部分垃圾收集器对于新生代都采取Copying算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。 而由于老年代的特点是每次回收都只回收少量对象,一般使用的是Mark-Compact算法。

注意,在堆区之外还有一个代就是永久代(Permanet Generation),它用来存储class类、常量、方法描述等。对永久代的回收主要回收两部分内容:废弃常量和无用的类。

垃圾收集器

新生代垃圾收集器有Serial、ParNew、Parallel Scavenge,G1,属于老年代的垃圾收集器有CMS、Serial Old、Parallel Old和G1.其中的G1是一种既可以对新生代对象也可以对老年代对象进行回收的垃圾收集器。然而,在所有的垃圾收集器中,并没有一种普遍使用的垃圾收集器。在不同的场景下,每种垃圾收集器有各自的优势,如下图:

13119604.jpg

Serial收集器

Serial是最基本也是发展最悠久的收集器。它是一种单线程垃圾收集器,这就意味着在其进行垃圾收集的时候需要暂停其他的线程

gc_garbage4.png

收集过程:暂停所有线程
算法:复制算法
优点:简单高效,拥有很高的单线程收集效率
应用:Client模式下的默认新生代收集器

ParNew收集器

可以把这个收集器理解为Serial收集器的多线程版本,由于存在线程切换的开销,ParNew在单CPU的环境中比不上Serial,**且在通过超线程技术实现的两个CPU的环境中也不能100%保证能超越Serial. 但随着可用的CPU数量的增加, 收集效率肯定也会大大增加(ParNew收集线程数与CPU的数量相同, 因此在CPU数量过大的环境中, 可用-XX:ParallelGCThreads参数控制GC线程数).

收集过程:暂停所有线程
算法:复制算法
优点:在CPU多的情况下,拥有比Serial更好的效果。单CPU环境下Serial效果更好
应用:许多运行在Server模式下的虚拟机中首选的新生代收集器

Parallel收集器

Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。区别在于Parallel Scavenge收集器更关注可控制的吞吐量,

吞吐量 = 运行用户代码的时间/(运行用户代码的时间+垃圾收集时间)。

这个参数有什么意义呢?根据数据知识,吞吐量越大,意味着垃圾收集的时间越短,则用户代码则可以充分利用CPU资源,尽快完成程序的运算任务。Parallel Scavenge收集器使用两个参数控制吞吐量:
-XX:MaxGCPauseMillis控制最大的垃圾收集停顿时间,
-XX:GCRatio直接设置吞吐量的大小。
直观上,只要最大的垃圾收集停顿时间越小,吞吐量是越高的,但是GC停顿时间的缩短是以牺牲吞吐量和新生代空间作为代价的。比如原来10秒收集一次,每次停顿100毫秒,现在变成5秒收集一次,每次停顿70毫秒。停顿时间下降的同时,吞吐量也下降了。
除此之外,Parallel Scavenge收集器还可以设置参数-XX:+UseAdaptiveSizePocily来动态调整停顿时间或者最大的吞吐量,这种方式称为GC自适应调节策略,这点是ParNew收集器所没有的。

Serial Old收集器

Serial Old收集器是Serial收集器的老年代版本,也是一个单线程收集器,采用“标记-整理算法”进行回收。其运行过程与Serial收集器一样。

Parallel Old收集器

Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法进行垃圾回收。

通常与Parallel Scavenge收集器配合使用,“吞吐量优先”收集器是这个组合的特点,在注重吞吐量和CPU资源敏感的场合,都可以使用这个组合。

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。
从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括:

  • 初始标记(CMS initial mark)
  • 并发标记(CMS concurrent mark)
  • 重新标记(CMS remark)
  • 并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行。

优点: 并发收集、低停顿
缺点: 产生大量空间碎片、并发阶段会降低吞吐量

参数控制:

-XX:+UseConcMarkSweepGC 使用CMS收集器
-XX:+ UseCMSCompactAtFullCollection Full GC后,进行一次碎片整理;整理过程是独占的,会引起停顿时间变长
-XX:+CMSFullGCsBeforeCompaction 设置进行几次Full GC后,进行一次碎片整理
-XX:ParallelCMSThreads 设定CMS的线程数量(一般情况约等于可用CPU数量)

G1收集器 (整个Java堆:包括新生代和老年代)

G1(Garbage-First)收集器是现今收集器技术的最新成果之一,之前一直处于实验阶段,直到jdk7u4之后,才正式作为商用的收集器。
与前几个收集器相比,G1收集器有以下特点:

并行与并发
分代收集(仍然保留了分代的概念)
空间整合(整体上属于“标记-整理”算法,不会导致空间碎片
可预测的停顿(比CMS更先进的地方在于能让使用者明确指定一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒)

此外,G1收集器将Java堆划分为多个大小相等的Region(独立区域),新生代与老年代都是一部分Region的集合,G1的收集范围则是这一个个Region

G1的工作过程如下:

  • 初始标记(Initial Marking)
  • 并发标记(Concurrent Marking)
  • 最终标记(Final Marking)
  • 筛选回收(Live Data Counting and Evacuation)

初始标记阶段仅仅只是标记一下GC Roots能够直接关联的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段的用户程序并发运行的时候,能在正确可用的Region中创建对象,这个阶段需要暂停线程。并发标记阶段从GC Roots进行可达性分析,找出存活的对象,这个阶段是与用户线程并发执行的。最终标记阶段则是修正在并发标记阶段因为用户程序的并发执行而导致标记产生变动的那一部分记录,这部分记录被保存在Remembered Set Logs中,最终标记阶段再把Logs中的记录合并到Remembered Set中,这个阶段是并行执行的,仍然需要暂停用户线程。最后在筛选阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间制定回收计划。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,425评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,058评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,186评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,848评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,249评论 3 286
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,554评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,830评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,536评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,239评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,505评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,004评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,346评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,999评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,060评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,821评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,574评论 2 271
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,480评论 2 267

推荐阅读更多精彩内容