高阶Java开发必备:分布式系统的唯一id生成算法你了解吗?

之前一篇文章,我们聊了一下分库分表相关的一些基础知识,具体可以参见:《支撑日活百万用户的高并发系统,应该如何设计其数据库架构?》

这篇文章,我们就接着分库分表的知识,来具体聊一下全局唯一id如何生成。

在分库分表之后你必然要面对的一个问题,就是id咋生成?

因为要是一个表分成多个表之后,每个表的id都是从1开始累加自增长,那肯定不对啊。

举个例子,你的订单表拆分为了1024张订单表,每个表的id都从1开始累加,这个肯定有问题了!

你的系统就没办法根据表主键来查询订单了,比如id = 50这个订单,在每个表里都有!

所以此时就需要分布式架构下的全局唯一id生成的方案了,在分库分表之后,对于插入数据库中的核心id,不能直接简单使用表自增id,要全局生成唯一id,然后插入各个表中,保证每个表内的某个id,全局唯一。

比如说订单表虽然拆分为了1024张表,但是id = 50这个订单,只会存在于一个表里。

那么如何实现全局唯一id呢?有以下几种方案。

(1)方案一:独立数据库自增id

这个方案就是说你的系统每次要生成一个id,都是往一个独立库的一个独立表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id。拿到这个id之后再往对应的分库分表里去写入。

比如说你有一个auto_id库,里面就一个表,叫做auto_id表,有一个id是自增长的。

那么你每次要获取一个全局唯一id,直接往这个表里插入一条记录,获取一个全局唯一id即可,然后这个全局唯一id就可以插入订单的分库分表中。

这个方案的好处就是方便简单,谁都会用。缺点就是单库生成自增id,要是高并发的话,就会有瓶颈的,因为auto_id库要是承载个每秒几万并发,肯定是不现实的了。

(2)方案二:uuid

这个每个人都应该知道吧,就是用UUID生成一个全局唯一的id。

好处就是每个系统本地生成,不要基于数据库来了

不好之处就是,uuid太长了,作为主键性能太差了,不适合用于主键。

如果你是要随机生成个什么文件名了,编号之类的,你可以用uuid,但是作为主键是不能用uuid的。

(3)方案三:获取系统当前时间

这个方案的意思就是获取当前时间作为全局唯一的id。

但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。

一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个id,如果业务上你觉得可以接受,那么也是可以的。

你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,比如说订单编号:时间戳 + 用户id + 业务含义编码

(4)方案四:snowflake算法的思想分析

snowflake算法,是twitter开源的分布式id生成算法。

其核心思想就是:使用一个64 bit的long型的数字作为全局唯一id,这64个bit中,其中1个bit是不用的,然后用其中的41 bit作为毫秒数,用10 bit作为工作机器id,12 bit作为序列号。

给大家举个例子吧,比如下面那个64 bit的long型数字,大家看看

上面第一个部分,是1个bit:0,这个是无意义的

上面第二个部分是41个bit:表示的是时间戳

上面第三个部分是5个bit:表示的是机房id,10001

上面第四个部分是5个bit:表示的是机器id,1 1001

上面第五个部分是12个bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的id的序号,0000 00000000

1 bit:是不用的,为啥呢?

因为二进制里第一个bit为如果是1,那么都是负数,但是我们生成的id都是正数,所以第一个bit统一都是0

41 bit:表示的是时间戳,单位是毫秒。

41 bit可以表示的数字多达2^41 - 1,也就是可以标识2 ^ 41 - 1个毫秒值,换算成年就是表示69年的时间

10 bit:记录工作机器id,代表的是这个服务最多可以部署在2^10台机器上,也就是1024台机器。

但是10 bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2 ^ 5个机房(32个机房),每个机房里可以代表2 ^ 5个机器(32台机器)。

12 bit:这个是用来记录同一个毫秒内产生的不同id。

12 bit可以代表的最大正整数是2 ^ 12 - 1 = 4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id

简单来说,你的某个服务假设要生成一个全局唯一id,那么就可以发送一个请求给部署了snowflake算法的系统,由这个snowflake算法系统来生成唯一id。

这个snowflake算法系统首先肯定是知道自己所在的机房和机器的,比如机房id = 17,机器id = 12。

接着snowflake算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个64 bit的long型id,64个bit中的第一个bit是无意义的。

接着41个bit,就可以用当前时间戳(单位到毫秒),然后接着5个bit设置上这个机房id,还有5个bit设置上机器id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成id的请求累加一个序号,作为最后的12个bit。

最终一个64个bit的id就出来了,类似于:

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的id。可能一个毫秒内会生成多个id,但是有最后12个bit的序号来区分开来。

下面我们简单看看这个snowflake算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个64bit的数字中各个bit位来设置不同的标志位,区分每一个id。

(5)snowflake算法的代码实现

public class IdWorker {

private long workerId; // 这个就是代表了机器id

private long datacenterId; // 这个就是代表了机房id

private long sequence; // 这个就是代表了一毫秒内生成的多个id的最新序号

public IdWorker(long workerId, long datacenterId, long sequence) {

// sanity check for workerId

// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0

if (workerId > maxWorkerId || workerId < 0) {

throw new IllegalArgumentException(

String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));

}

if (datacenterId > maxDatacenterId || datacenterId < 0) {

throw new IllegalArgumentException(

String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));

}

this.workerId = workerId;

this.datacenterId = datacenterId;

this.sequence = sequence;

}

private long twepoch = 1288834974657L;

private long workerIdBits = 5L;

private long datacenterIdBits = 5L;

// 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内

private long maxWorkerId = -1L ^ (-1L << workerIdBits);

// 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内

private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

private long sequenceBits = 12L;

private long workerIdShift = sequenceBits;

private long datacenterIdShift = sequenceBits + workerIdBits;

private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

private long sequenceMask = -1L ^ (-1L << sequenceBits);

private long lastTimestamp = -1L;

public long getWorkerId(){

return workerId;

}

public long getDatacenterId() {

return datacenterId;

}

public long getTimestamp() {

return System.currentTimeMillis();

}

// 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id

public synchronized long nextId() {

// 这儿就是获取当前时间戳,单位是毫秒

long timestamp = timeGen();

if (timestamp < lastTimestamp) {

System.err.printf(

"clock is moving backwards. Rejecting requests until %d.", lastTimestamp);

throw new RuntimeException(

String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",

lastTimestamp - timestamp));

}

// 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id

// 这个时候就得把seqence序号给递增1,最多就是4096

if (lastTimestamp == timestamp) {

// 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,

//这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围

sequence = (sequence + 1) & sequenceMask;

if (sequence == 0) {

timestamp = tilNextMillis(lastTimestamp);

}

} else {

sequence = 0;

}

// 这儿记录一下最近一次生成id的时间戳,单位是毫秒

lastTimestamp = timestamp;

// 这儿就是最核心的二进制位运算操作,生成一个64bit的id

// 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit

// 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型

return ((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) | sequence;

}

private long tilNextMillis(long lastTimestamp) {

long timestamp = timeGen();

while (timestamp <= lastTimestamp) {

timestamp = timeGen();

}

return timestamp;

}

private long timeGen(){

return System.currentTimeMillis();

}

//---------------测试---------------

public static void main(String[] args) {

IdWorker worker = new IdWorker(1,1,1);

for (int i = 0; i < 30; i++) {

System.out.println(worker.nextId());

}

}

}

(6)snowflake算法一个小小的改进思路

其实在实际的开发中,这个snowflake算法可以做一点点改进。

因为大家可以考虑一下,我们在生成唯一id的时候,一般都需要指定一个表名,比如说订单表的唯一id。

所以上面那64个bit中,代表机房的那5个bit,可以使用业务表名称来替代,比如用00001代表的是订单表。

因为其实很多时候,机房并没有那么多,所以那5个bit用做机房id可能意义不是太大。

这样就可以做到,snowflake算法系统的每一台机器,对一个业务表,在某一毫秒内,可以生成一个唯一的id,一毫秒内生成很多id,用最后12个bit来区分序号对待。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,560评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,104评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,297评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,869评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,275评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,563评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,833评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,543评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,245评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,512评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,011评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,359评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,006评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,062评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,825评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,590评论 2 273
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,501评论 2 268

推荐阅读更多精彩内容

  • 1 面试题 分库分表之后,id主键如何处理? 2 考点分析 其实这是分库分表之后你必然要面对的一个问题,就是id咋...
    JavaEdge阅读 465评论 0 1
  • 这篇文章总结了分布式主键或者唯一键的生成算法,文章最后有我们基于snowflow算法的思考和实践。 分布式主键的生...
    彦帧阅读 2,627评论 0 5
  • 文章转载自公众号“达达京东到家技术”。 背景 在分布式系统中,经常需要对大量的数据、消息、http 请求等进行唯一...
    淡淡的橙子阅读 5,615评论 1 41
  • 写了一下午字,有些乏了,晚上喝上自家煮的皮蛋瘦肉粥,那味道……味蕾被完全打开,这是我一周以来最有味儿的一顿。 吃好...
    年糕的日常阅读 261评论 0 0
  • 1.资金成为有效资本的基本四要素:钱、金额大小、使用时限、背后的智慧。 2.资本一定是被判了无期徒刑的资本。 3....
    詹_c390阅读 214评论 0 0