机器学习分类

机器学习通常分为四类

  • 监督学习
  • 无监督学习
  • 半监督学习
  • 强化学习

监督学习

监督学习是从标记的训练数据来推断一个功能的机器学习任务。在监督学习中,每个实例都是由一个输入对象(通常为矢量)和一个期望的输出值(也称为监督信号)组成。监督学习算法是分析该训练数据,并产生一个推断的功能,其可以用于映射出新的实例。一个最佳的方案将允许该算法来正确地决定那些看不见的实例的类标签。


监督学习

监督学习有两个典型的分类:

  • 分类
    比如上面的邮件过滤就是一个二分类问题,分为正例即正常邮件,负例即垃圾邮件。
  • 回归
    回归的任务是预测目标数值,比如房屋的价格,给定一组特性(房屋大小、房间数等),来预测房屋的售价。

常见的监督学习算法

  • k-Nearest Neighbors
  • Linear Regression
  • Logistic Regression
  • Support Vector Machines (SVMs)
  • Decision Trees and Random Forests
  • Neural networks

无监督学习

我们有一些问题,但是不知道答案,我们要做的无监督学习就是按照他们的性质把他们自动地分成很多组,每组的问题是具有类似性质的(比如数学问题会聚集在一组,英语问题会聚集在一组,物理........)
所有数据只有特征向量没有标签,但是可以发现这些数据呈现出聚群的结构,本质是一个相似的类型的会聚集在一起。把这些没有标签的数据分成一个一个组合,就是聚类(Clustering)


聚类

常见的无监督学习算法

  • Clustering
    • k-Means
    • Hierarchical Cluster Analysis (HCA)
    • Expectation Maximization
  • Visualization and dimensionality reduction
    • Principal Component Analysis (PCA)
    • Kernel PCA
    • Locally-Linear Embedding (LLE)
    • t-distributed Stochastic Neighbor Embedding (t-SNE)
  • Association rule learning
    • Apriori
    • Eclat

无监督学习算法常见工作

  • 降维
    降维的目标是简化数据,但是损失尽量少的信息。一个方法是将几个相似的特征或者代表一个属性的几个特征提取成一个特征,也是我们通常说的特征提取。
  • 异常检测
    比如说检测信用卡欺诈,我们用正例来训练模型,然后当一个新的实例到来的时候,判断是否像正实例,否则就是负例。


  • 关联规则
    可以参照啤酒喝尿布的例子

半监督

半监督学习在训练阶段结合了大量未标记的数据和少量标签数据。与使用所有标签数据的模型相比,使用训练集的训练模型在训练时可以更为准确,而且训练成本更低。在现实任务中,未标记样本多、有标记样本少是一个比价普遍现象,如何利用好未标记样本来提升模型泛化能力,就是半监督学习研究的重点。要利用未标记样本,需假设未标记样本所揭示的数据分布信息与类别标记存在联系。

强化学习

所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。如果Agent的某个行为策略导致环境正的奖赏(强化信号),那么Agent以后产生这个行为策略的趋势便会加强 -《百科》
简单来说就是给你一只小白鼠在迷宫里面,目的是找到出口,如果他走出了正确的步子,就会给它正反馈(糖),否则给出负反馈(点击),那么,当它走完所有的道路后。无论比把它放到哪儿,它都能通过以往的学习找到通往出口最正确的道路。强化学习的典型案例就是阿尔法狗。


其他

此外机器学习还有其它的分类方式,比如批量学习和在线学习,也可分为参数学习和非参数学习

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,012评论 4 359
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,589评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 106,819评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,652评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 51,954评论 3 285
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,381评论 1 210
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,687评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,404评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,082评论 1 238
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,355评论 2 241
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,880评论 1 255
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,249评论 2 250
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,864评论 3 232
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,007评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,760评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,394评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,281评论 2 259

推荐阅读更多精彩内容