Deep Learning

1. Deep Learning 与 Nueral NetWork

1.1 Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展。大约二三十年前,neural network曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:

  • 比较容易过拟合,参数比较难tune,而且需要不少trick;

  • 训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;

1.2 Deep learning与传统的神经网络之间有相同的地方也有很多不同。

  • 二者的相同在于deep learning采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logistic regression模型;这种分层结构,是比较接近人类大脑的结构的。


    DP VS NN.jpg
  • 而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。传统神经网络中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。而deep learning整体上是一个layer-wise的训练机制。这样做的原因是因为,如果采用back propagation的机制,对于一个deep network(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradient diffusion(梯度扩散)。

2. 卷积神经网络

2.1 卷积

对于给定的一幅图像来说,给定一个卷积核,卷积就是根据卷积窗口,进行像素的加权求和。



卷积运算一个重要的特点就是: 通过卷积运算,可以使原信号特征增强,并且降低噪音。

2.2 池化

CNN的池化(图像下采样)方法很多:Mean pooling(均值采样)、Max pooling(最大值采样)、Overlapping (重叠采样)、L2 pooling(均方采样)、Local Contrast Normalization(归一化采样)、Stochasticpooling(随即采样)、Def-pooling(形变约束采样)。其中最经典的是最大池化,

  • 最大化池化


    原图片.jpg

如上图所示,然后图片中每个像素点的值是上面各个格子中的数值。然后我要对这张44的图片进行池化,池化的大小为(2,2),跨步为2,那么采用最大池化也就是对上面44的图片进行分块,每个块的大小为2*2,然后统计每个块的最大值,作为下采样后图片的像素值,具体计算如下图所示:

池化.jpg

也就是说我们最后得到下采样后的图片为:


2.3 feature map

其实一张图片经过一个卷积核进行卷积运算,我们可以得到一张卷积后的结果图片,而这张图片就是特征图。

2.4 经典结构

LeNet-5

LetNet-5
  • 输入:32*32的手写字体图片,这些手写字体包含0~9数字,也就是相当于10个类别的图片
  • 输出:分类结果,0~9之间的一个数
    因此我们可以知道,这是一个多分类问题,总共有十个类,因此神经网络的最后输出层必然是SoftMax问题,然后神经元的个数是10个。LeNet-5结构:
  • 输入层:32*32的图片,也就是相当于1024个神经元
  • C1层:paper作者,选择6个特征卷积核,然后卷积核大小选择55,这样我们可以得到6个特征图,然后每个特征图的大小为32-5+1=28,也就是神经元的个数由1024减小到了2828=784。
  • S2层:这就是下采样层,也就是使用最大池化进行下采样,池化的size,选择(2,2),也就是相当于对C1层2828的图片,进行分块,每个块的大小为22,这样我们可以得到1414个块,然后我们统计每个块中,最大的值作为下采样的新像素,因此我们可以得到S1结果为:1414大小的图片,共有6个这样的图片。
  • C3层:卷积层,这一层我们选择卷积核的大小依旧为55,据此我们可以得到新的图片大小为14-5+1=10,然后我们希望可以得到16张特征图。那么问题来了?这一层是最难理解的,我们知道S2包含:6张1414大小的图片,我们希望这一层得到的结果是:16张10*10的图片。这16张图片的每一张,是通过S2的6张图片进行加权组合得到的,具体是怎么组合的呢?
  • S4层:下采样层,比较简单,也是知己对C3的16张1010的图片进行最大池化,池化块的大小为22。因此最后S4层为16张大小为55的图片。至此我们的神经元个数已经减少为:165*5=400。
  • C5层:我们继续用5*5的卷积核进行卷积,然后我们希望得到120个特征图。这样C5层图片的大小为5-5+1=1,也就是相当于1个神经元,120个特征图,因此最后只剩下120个神经元了。这个时候,神经元的个数已经够少的了,后面我们就可以直接利用全连接神经网络,进行这120个神经元的后续处理.

CNN 实现

theano

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 157,012评论 4 359
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 66,589评论 1 290
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 106,819评论 0 237
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,652评论 0 202
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 51,954评论 3 285
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,381评论 1 210
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,687评论 2 310
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,404评论 0 194
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,082评论 1 238
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,355评论 2 241
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 31,880评论 1 255
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,249评论 2 250
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 32,864评论 3 232
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,007评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,760评论 0 192
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,394评论 2 269
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,281评论 2 259

推荐阅读更多精彩内容