NIO效率高的原理之零拷贝与直接内存映射

前言

在笔者上一篇博客,详解了NIO,并总结NIO相比BIO的效率要高的三个原因,点击查看

这篇博客将针对第三个原因,进行更详细的讲解。

首先澄清,零拷贝与内存直接映射并不是Java中独有的概念,并且这两个技术并不是等价的。

零拷贝

零拷贝是指避免在用户态(User-space) 与内核态(Kernel-space) 之间来回拷贝数据的技术。

传统IO

传统IO读取数据并通过网络发送的流程,如下图

传统IO
  1. read()调用导致上下文从用户态切换到内核态。内核通过sys_read()(或等价的方法)从文件读取数据。DMA引擎执行第一次拷贝:从文件读取数据并存储到内核空间的缓冲区。
  2. 请求的数据从内核的读缓冲区拷贝到用户缓冲区,然后read()方法返回。read()方法返回导致上下文从内核态切换到用户态。现在待读取的数据已经存储在用户空间内的缓冲区。至此,完成了一次IO的读取过程。
  3. send()调用导致上下文从用户态切换到内核态。第三次拷贝数据从用户空间重新拷贝到内核空间缓冲区。但是,这一次,数据被写入一个不同的缓冲区,一个与目标套接字相关联的缓冲区。
  4. send()系统调用返回导致第四次上下文切换。当DMA引擎将数据从内核缓冲区传输到协议引擎缓冲区时,第四次拷贝是独立且异步的。

内存缓冲数据(上图中的read buffer和socket buffer ),主要是为了提高性能,内核可以预读部分数据,当所需数据小于内存缓冲区大小时,将极大的提高性能。

IO的内核切换

磁盘到内核空间属于DMA拷贝,用户空间与内核空间之间的数据传输并没有类似DMA这种可以不需要CPU参与的传输方式,因此用户空间与内核空间之间的数据传输是需要CPU全程参与的(如上图所示)。

DMA拷贝即直接内存存取,原理是外部设备不通过CPU而直接与系统内存交换数据

所以也就有了使用零拷贝技术,避免不必要的CPU数据拷贝过程。

NIO的零拷贝

NIO的零拷贝由transferTo方法实现。transferTo方法将数据从FileChannel对象传送到可写的字节通道(如Socket Channel等)。在transferTo方法内部实现中,由native方法transferTo0来实现,它依赖底层操作系统的支持。在UNIX和Linux系统中,调用这个方法会引起sendfile()系统调用,实现了数据直接从内核的读缓冲区传输到套接字缓冲区,避免了用户态(User-space) 与内核态(Kernel-space) 之间的数据拷贝。

NIO零拷贝

使用NIO零拷贝,流程简化为两步:

  1. transferTo方法调用触发DMA引擎将文件上下文信息拷贝到内核读缓冲区,接着内核将数据从内核缓冲区拷贝到与套接字相关联的缓冲区。
  2. DMA引擎将数据从内核套接字缓冲区传输到协议引擎(第三次数据拷贝)。

内核态与用户态切换如下图:

NIO零拷贝的内核切换

相比传统IO,使用NIO零拷贝后改进的地方:

  1. 我们已经将上下文切换次数从4次减少到了2次;
  2. 将数据拷贝次数从4次减少到了3次(其中只有1次涉及了CPU,另外2次是DMA直接存取)。

如果底层NIC(网络接口卡)支持gather操作,可以进一步减少内核中的数据拷贝。在Linux 2.4以及更高版本的内核中,socket缓冲区描述符已被修改用来适应这个需求。这种方式不但减少上下文切换,同时消除了需要CPU参与的重复的数据拷贝。

NIO

用户这边的使用方式不变,依旧通过transferTo方法,但是方法的内部实现发生了变化:

  1. transferTo方法调用触发DMA引擎将文件上下文信息拷贝到内核缓冲区。
  2. 数据不会被拷贝到套接字缓冲区,只有数据的描述符(包括数据位置和长度)被拷贝到套接字缓冲区。DMA 引擎直接将数据从内核缓冲区拷贝到协议引擎,这样减少了最后一次需要消耗CPU的拷贝操作。

NIO零拷贝适用于以下场景:

  1. 文件较大,读写较慢,追求速度
  2. JVM内存不足,不能加载太大数据
  3. 内存带宽不够,即存在其他程序或线程存在大量的IO操作,导致带宽本来就小

NIO的零拷贝代码示例

/**
 * filechannel进行文件复制(零拷贝)
 *
 * @param fromFile 源文件
 * @param toFile   目标文件
 */
public static void fileCopyWithFileChannel(File fromFile, File toFile) {
    try (// 得到fileInputStream的文件通道
         FileChannel fileChannelInput = new FileInputStream(fromFile).getChannel();
         // 得到fileOutputStream的文件通道
         FileChannel fileChannelOutput = new FileOutputStream(toFile).getChannel()) {

        //将fileChannelInput通道的数据,写入到fileChannelOutput通道
        fileChannelInput.transferTo(0, fileChannelInput.size(), fileChannelOutput);
    } catch (IOException e) {
        e.printStackTrace();
    }
}

static final int BUFFER_SIZE = 1024;
/**
 * BufferedInputStream进行文件复制(用作对比实验)
 *
 * @param fromFile 源文件
 * @param toFile   目标文件
 */
public static void bufferedCopy(File fromFile,File toFile) throws IOException {
    try(BufferedInputStream bis = new BufferedInputStream(new FileInputStream(fromFile));
        BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream(toFile))){
        byte[] buf = new byte[BUFFER_SIZE];
        while ((bis.read(buf)) != -1) {
            bos.write(buf);
        }
    }
}

在不需要进行数据文件操作时,可以使用NIO的零拷贝。但如果既需要IO速度,又需要进行数据操作,则需要使用NIO的直接内存映射。

直接内存映射

Linux提供的mmap系统调用, 它可以将一段用户空间内存映射到内核空间, 当映射成功后, 用户对这段内存区域的修改可以直接反映到内核空间;同样地, 内核空间对这段区域的修改也直接反映用户空间。正因为有这样的映射关系, 就不需要在用户态(User-space)与内核态(Kernel-space) 之间拷贝数据, 提高了数据传输的效率,这就是内存直接映射技术。

NIO的直接内存映射

JDK1.4加入了NIO机制和直接内存,目的是防止Java堆和Native堆之间数据复制带来的性能损耗,此后NIO可以使用Native的方式直接在 Native堆分配内存。

背景:堆内数据在flush到远程时,会先复制到Native 堆,然后再发送;直接移到堆外就更快了。

在JDK8,Native Memory包括元空间和Native 堆。更多有关JVM的知识,点击查看JVM内存模型和垃圾回收机制

直接内存

直接内存的创建

在ByteBuffer有两个子类,HeapByteBuffer和DirectByteBuffer。前者是存在于JVM堆中的,后者是存在于Native堆中的。

UML

申请堆内存

public static ByteBuffer allocate(int capacity) {
    if (capacity < 0)
        throw new IllegalArgumentException();
    return new HeapByteBuffer(capacity, capacity);
}

申请直接内存

public static ByteBuffer allocateDirect(int capacity) {
    return new DirectByteBuffer(capacity);
}

使用直接内存的原因

  1. 对垃圾回收停顿的改善。因为full gc时,垃圾收集器会对所有分配的堆内内存进行扫描,垃圾收集对Java应用造成的影响,跟堆的大小是成正比的。过大的堆会影响Java应用的性能。如果使用堆外内存的话,堆外内存是直接受操作系统管理。这样做的结果就是能保持一个较小的JVM堆内存,以减少垃圾收集对应用的影响。(full gc时会触发堆外空闲内存的回收。)
  2. 减少了数据从JVM拷贝到native堆的次数,在某些场景下可以提升程序I/O的性能。
  3. 可以突破JVM内存限制,操作更多的物理内存。

当直接内存不足时会触发full gc,排查full gc的时候,一定要考虑。

有关JVM和GC的相关知识,请点击查看JVM内存模型和垃圾回收机制

使用直接内存的问题

  1. 堆外内存难以控制,如果内存泄漏,那么很难排查(VisualVM可以通过安装插件来监控堆外内存)。
  2. 堆外内存只能通过序列化和反序列化来存储,保存对象速度比堆内存慢,不适合存储很复杂的对象。一般简单的对象或者扁平化的比较适合。
  3. 直接内存的访问速度(读写方面)会快于堆内存。在申请内存空间时,堆内存速度高于直接内存。

直接内存适合申请次数少,访问频繁的场合。如果内存空间需要频繁申请,则不适合直接内存。

NIO的直接内存映射

NIO中一个重要的类:MappedByteBuffer——java nio引入的文件内存映射方案,读写性能极高。MappedByteBuffer将文件直接映射到内存。可以映射整个文件,如果文件比较大的话可以考虑分段进行映射,只要指定文件的感兴趣部分就可以。

由于MappedByteBuffer申请的是直接内存,因此不受Minor GC控制,只能在发生Full GC时才能被回收,因此Java提供了DirectByteBuffer类来改善这一情况。它是MappedByteBuffer类的子类,同时它实现了DirectBuffer接口,维护一个Cleaner对象来完成内存回收。因此它既可以通过Full GC来回收内存,也可以调用clean()方法来进行回收

NIO的直接内存映射的函数调用

FileChannel提供了map方法来把文件映射为内存对象:

MappedByteBuffer map(int mode,long position,long size);

可以把文件的从position开始的size大小的区域映射为内存对象,mode指出了 可访问该内存映像文件的方式

  • READ_ONLY,(只读): 试图修改得到的缓冲区将导致抛出 ReadOnlyBufferException.(MapMode.READ_ONLY)
  • READ_WRITE(读/写): 对得到的缓冲区的更改最终将传播到文件;该更改对映射到同一文件的其他程序不一定是可见的。 (MapMode.READ_WRITE)
  • PRIVATE(专用): 对得到的缓冲区的更改不会传播到文件,并且该更改对映射到同一文件的其他程序也不是可见的;相反,会创建缓冲区已修改部分的专用副本。 (MapMode.PRIVATE)

使用参数-XX:MaxDirectMemorySize=10M,可以指定DirectByteBuffer的大小最多是10M。

直接内存映射代码示例

static final int BUFFER_SIZE = 1024;

/**
 * 使用直接内存映射读取文件
 * @param file
 */
public static void fileReadWithMmap(File file) {

    long begin = System.currentTimeMillis();
    byte[] b = new byte[BUFFER_SIZE];
    int len = (int) file.length();
    MappedByteBuffer buff;
    try (FileChannel channel = new FileInputStream(file).getChannel()) {
        // 将文件所有字节映射到内存中。返回MappedByteBuffer
        buff = channel.map(FileChannel.MapMode.READ_ONLY, 0, channel.size());
        for (int offset = 0; offset < len; offset += BUFFER_SIZE) {
            if (len - offset > BUFFER_SIZE) {
                buff.get(b);
            } else {
                buff.get(new byte[len - offset]);
            }
        }
    } catch (IOException e) {
        e.printStackTrace();
    }
    long end = System.currentTimeMillis();
    System.out.println("time is:" + (end - begin));
}

/**
 * HeapByteBuffer读取文件
 * @param file
 */
public static void fileReadWithByteBuffer(File file) {

    long begin = System.currentTimeMillis();
    try(FileChannel channel = new FileInputStream(file).getChannel();) {
        // 申请HeapByteBuffer
        ByteBuffer buff = ByteBuffer.allocate(BUFFER_SIZE);
        while (channel.read(buff) != -1) {
            buff.flip();
            buff.clear();
        }
    } catch (IOException e) {
        e.printStackTrace();
    }
    long end = System.currentTimeMillis();
    System.out.println("time is:" + (end - begin));
}
哎呀,如果我的名片丢了。微信搜索“全菜工程师小辉”,依然可以找到我
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,560评论 4 361
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,104评论 1 291
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,297评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,869评论 0 204
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,275评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,563评论 1 216
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,833评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,543评论 0 197
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,245评论 1 241
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,512评论 2 244
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,011评论 1 258
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,359评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,006评论 3 235
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,062评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,825评论 0 194
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,590评论 2 273
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,501评论 2 268

推荐阅读更多精彩内容