《精通比特币第二版》中文版第十章挖矿和共识2/6

96
乔延宏
2017.11.09 15:56* 字数 8096

精力有限,后期修订以github为主,建议大家移步github链接阅读更新版本,感谢理解:
https://github.com/tianmingyun/MasterBitcoin2CN

10.8 成功构建区块

前面已经看到,Jing的节点创建了一个候选区块,准备拿它来挖矿。Jing有几个安装了ASIC(专用集成电路)的矿机, 上面有成千上万个集成电路可以超高速地并行运行SHA256算法。这些定制的硬件通过USB连接到他的挖矿节点上。接 下来,运行在Jing的桌面电脑上的挖矿节点将区块头信息传送给这些硬件,让它们以每秒亿万次的速度进行nonce测 试。

​在对区块277,316的挖矿工作开始大概11分钟后,这些硬件里的其中一个求得了解并发回挖矿节点。当把这个结果放进 区块头时,nonce 4,215,469,401 就会产生一个区块哈希值:

0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569

而这个值小于难度目标值:

0000000000000003A30C00000000000000000000000000000000000000000000

​Jing的挖矿节点立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为区块277,316加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相 同高度区块的计算,并立即开始计算区块链中下一个区块的工作。

​下节将介绍节点进行区块验证、最长链选择、达成共识,并以此形成一个去中心化区块链的过程。

10.9 校验新区块

​比特币共识机制的第三步是通过网络中的每个节点独立校验每个新区块。当新区块在网络中传播时,每一个节点在将它 转发到其节点之前,会进行一系列的测试去验证它。这确保了只有有效的区块会在网络中传播。独立校验还确保了诚实 的矿工生成的区块可以被纳入到区块链中,从而获得奖励。行为不诚实的矿工所产生的区块将被拒绝,这不但使他们失 去了奖励,而且也浪费了本来可以去寻找工作量证明解的机会,因而导致其电费亏损。

​当一个节点接收到一个新的区块,它将对照一个长长的标准清单对该区块进行验证,若没有通过验证,这个区块将被拒 绝。这些标准可以在比特币核心客户端的CheckBlock函数和CheckBlockHead函数中获得,

它包括:

▷ 区块的数据结构语法上有效

▷ 区块头的哈希值小于目标难度(确认包含足够的工作量证明)

▷ 区块时间戳早于验证时刻未来两个小时(允许时间错误)

▷ 区块大小在长度限制之内

▷ 第一个交易(且只有第一个)是coinbase交易

▷ 使用检查清单验证区块内的交易并确保它们的有效性

参见之前章节 “交易的独立校验”一节已经讨论过这个清单。每一个节点对每一个新区块的独立校验,确保了矿工无法欺诈。在前面的章节中,我们看到了矿工们如何去记录一笔交 易,以获得在此区块中创造的新比特币和交易费。为什么矿工不为他们自己记录一笔交易去获得数以千计的比特币?这 是因为每一个节点根据相同的规则对区块进行校验。一个无效的coinbase交易将使整个区块无效,这将导致该区块被拒 绝,因此,该交易就不会成为总账的一部分。矿工们必须构建一个完美的区块,基于所有节点共享的规则,并且根据正 确工作量证明的解决方案进行挖矿,他们要花费大量的电力挖矿才能做到这一点。如果他们作弊,所有的电力和努力都 会浪费。这就是为什么独立校验是去中心化共识的重要组成部分。

10.10 区块链的组装与选择

​比特币去中心化的共识机制的最后一步是将区块集合至有最大工作量证明的链中。一旦一个节点验证了一个新的区块, 它将尝试将新的区块连接到到现存的区块链,将它们组装起来。

节点维护三种区块:第一种是连接到主链上的,第二种是从主链上产生分支的(备用链),最后一种是在已知链中没有 找到已知父区块的。在验证过程中,一旦发现有不符合标准的地方,验证就会失败,这样区块会被节点拒绝,所以也不 会加入到任何一条链中。

​任何时候,主链都是累计了最多难度的区块链。在一般情况下,主链也是包含最多区块的那个链,除非有两个等长的链 并且其中一个有更多的工作量证明。主链也会有一些分支,这些分支中的区块与主链上的区块互为“兄弟”区块。这些区 块是有效的,但不是主链的一部分。 保留这些分支的目的是如果在未来的某个时刻它们中的一个延长了并在难度值上超 过了主链,那么后续的区块就会引用它们。在“10.10.1 区块链分叉”,我们将会看到在同样的区块高度,几乎同时挖出区 块时,候选链是如何产生的。

​当节点接收到新区块,它会尝试将这个区块插入到现有区块链中。节点会看一下这个区块的“previous block hash”字 段,这个字段是该区块对其父区块的引用。同时,新的节点将尝试在已存在的区块链中找出这个父区块。大多数情况 下,父区块是主块链的“顶点”,这就意味着这个新的区块延长了主链。举个例子,一个新的区块——区块277,316引用 了它的父区块——区块277,315。收到277316区块的大部分节点都已经将277315最为主链的顶端,因此,连接这个新区块并延长区块链。

​有时候,新区块所延长的区块链并不是主链,这一点我们将在“10.10.1 区块链分叉”中看到。在这种情况下,节点将新的区块添加到备用链,同时比较备用链与主链的难度。如果备用链比主链积累了更多的难度,节点将收敛于备用链,意味 着节点将选择备用链作为其新的主链,而之前那个老的主链则成为了备用链。如果节点是一个矿工,它将开始构造新的 区块,来延长这个更新更长的区块链。

​如果节点收到了一个有效的区块,而在现有的区块链中却未找到它的父区块,那么这个区块被认为是“孤块”。孤块会被 保存在孤块池中,直到它们的父区块被节点收到。一旦收到了父区块并且将其连接到现有区块链上,节点就会将孤块从 孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。当两个区块在很短的时间间隔内被挖出来,节点有 可能会以相反的顺序接收到它们,这个时候孤块现象就会出现。

选择了最大难度的区块链后,所有的节点最终在全网范围内达成共识。随着更多的工作量证明被添加到链中,链的暂时 性差异最终会得到解决。挖矿节点通过“投票”来选择它们想要延长的区块链,当它们挖出一个新块并且延长了一个链, 新块本身就代表它们的投票。

​相互竞争的链之间是存在差异的,下节我们将看到节点是怎样通过独立选择最长难度链来解决这种差异的。

10.10.1 区块链分叉

因为区块链是去中心化的数据结构,所以不同副本之间不能总是保持一致。区块有可能在不同时间到达不同节点,导致节点有不同的区块链全貌。解决的办法是,每一个节点总是选择并尝试延长代表累计了最大工作量证明的区块链,也就 是最长的或最大累计工作的链(greatest cumulative work chain)。节点通过累加链上的每个区块的工作量,得到建立这个链所要付出的工作量证明的总量。只要所有的节点选择最长累计工作的区块链,整个比特币网络最终会收敛到一致的状态。分叉即在不同区块链间发生的临时差异,当更多的区块添加到了某个分叉中,这个问题便会迎刃而解。

提示由于全球网络中的传输延迟,本节中描述的区块链分叉自动会发生。 我们也将在本章稍后再看看故意引起的分叉。

在接下来的几个图表中,我们将通过网络跟踪“fork”事件的进展。 该图是比特币网络的简化表示。 为了便于描述,不同的区块被显示为不同的形状(星形,三角形,倒置三角形,菱形),遍布网络。 网络中的每个圆表示一个节点。

每个节点都有自己的全局区块链视图。 当每个节点从其邻居接收区块时,它会更新其自己的区块链副本,选择最大累积工作链。 为便于描述,每个节点包含一个图形形状,表示它相信的区块处于主链的顶端。 因此,如果在节点里面看到星形,那就意味着该节点认为星形区块处于主链的顶端。

在第一张图(图10-2)中,网络有一个统一的区块链视角,以星形区块为主链的“顶点”。

​ 图10-2

​当有两个候选区块同时想要延长最长区块链时,分叉事件就会发生。正常情况下,分叉发生在两名矿工在较短的时间 内,各自都算得了工作量证明解的时候。两个矿工在各自的候选区块一发现解,便立即传播自己的“获胜”区块到网络 中,先是传播给邻近的节点而后传播到整个网络。每个收到有效区块的节点都会将其并入并延长区块链。如果该节点在 随后又收到了另一个候选区块,而这个区块又拥有同样父区块,那么节点会将这个区块连接到候选链上。其结果是,一 些节点收到了一个候选区块,而另一些节点收到了另一个候选区块,这时两个不同版本的区块链就出现了。在图10-3中,我们看到两个矿工(NodeX和NodeY)几乎同时挖到了两个不同的区块。这两个区块是顶点区块——星形区块的子区块,可以 延长这个区块链。为了方便查看,我们把节点X产生的区块标记为三角形,把节点Y生产的区块标记为倒三角形。

[图片上传失败...(image-5d62de-1510405747774)]

​ 图10-3

​例如,我们假设矿工节点X找到扩展区块链工作量证明的解,即三角形区块,构建在星形父区块的顶端。与此同时,同样进行星形区块扩展的节点Y也找到了扩展区块链工作量证明的解,即倒三角形区块作为候选区块。现在有两个可能的块,节点X的三角形区块和节点Y的倒三角形区块,这两个区块都是有效的,均包含有效的工作量证明解并延长同一 个父区块。这个两个区块可能包含了几乎相同的交易,只是在交易的排序上有些许不同。

​当两个区块开始在网络传播时,一些节点首先接收到三角形区块,另外一些节点首先接收倒三角形区块。如下图10-4所示,比特币网络上的节点对于区块链的顶点产生了分歧,一派以三角形区块为顶点,而另一派以倒三角形区块为顶点。

​ 图10-4

​在图中,假设节点X首先接收到三角形块,并用它扩展星形链。节点X选择三角形区块为主链。之后,节点X也收到倒三角区块。由于是第二次收到,因此它判定这个倒三角形区块是竞争失败的产物,认为是无效区块。然而,倒三角形的区块不会被丢弃。它被链接到星形链的父区块,并形成备用链。虽然节点X认为自己已经正确选择了获胜链,但是它还会保存“丢失”链,使得“丢失”链如果可能最终“获胜”,它还具有重新打包的所需的信息。

​在网络的另一端,节点Y根据自己的视角构建一个区块链。首先获得倒三角形区块,并选择这条链作为“赢家”。当它稍后收到三角形区块时,它也将三角形区块连接到星形链的父区块作为备用链。

​双方都是“正确的”或“不正确的”。两者都是自己关于区块链的有效立场。只有事后,才能理解这两个竞争链如何通过额外的工作得到延伸。

节点X阵营的其他节点将立即开始挖掘候选区块,以“三角形”作为扩展区块链的顶端。通过将三角形作为候选区块的父区块,它们用自己的哈希算力进行投票。它们的投票标明支持自己选择的链为主链。

​同样,节点Y阵营的其他节点,将开始构建一个以倒三角形作为其父节点的候选节点,扩展它们认为是主链的链。比赛再次开始。分叉问题几乎总是在一个区块内就被解决了。网络中的一部分算力专注于“三角形”区块为父区块,在其之上建立新的区 块;另一部分算力则专注在“倒三角形”区块上。即便算力在这两个阵营中平均分配,也总有一个阵营抢在另一个阵营前发现工作量证明解并将其传播出去。在这个例子中我们可以打个比方,假如工作在“三角形”区块上的矿工找到了一个“菱形”区块 延长了区块链(星形-三角形-菱形),他们会立刻传播这个新区块,整个网络会都会认为这个区块是有效的,如下图10-5所示。

[图片上传中...(image-b1106e-1510405747774-1)]

​ 图10-5

​选择“三角形”作为上一轮中胜出者的所有节点将简单地将区块链扩展一个块。然而,选择“倒三角”的节点现在将看到两个链:星形-三角形-菱形和星型-到三角形。星形-三角形-菱形这条链现在比其他链条更长(更多累积的工作)。因此,这些节点将星形-三角形-菱形设置为主链,并将星型-倒三角形链变为备用链,如图10-6所示。这是一个链的重新共识,因为这些节点被迫修改他们对块链的立场,把自己纳入更长的链。任何从事延伸星形-倒三角形的矿工现在都将停止这项工作,因为他们的候选人是“孤儿”,因为他们的父母“倒三角形”不再是最长的连锁。 “倒三角形”内的交易重新插入到内存池中用来包含在下一个块中,因为它们所在的块不再位于主链中。整个网络重新回到单一链状态,星形-三角形-菱形,“菱形”成为链中的最后一个块。所有矿工立即开始研究以“菱形”为父区块的候选块,以扩展这条星形-三角形-菱形链。

[图片上传中...(image-9eebc3-1510405747774-0)]

​ 图10-6

从理论上来说,两个区块的分叉是有可能的,这种情况发生在因先前分叉而相互对立起来的矿工,又几乎同时发现了两 个不同区块的解。然而,这种情况发生的几率是很低的。单区块分叉每周都会发生,而双块分叉则非常罕见。比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交 易清算更快地完成,也会导致更加频繁地区块链分叉。与之相对地,更长的间隔会减少分叉数量,却会导致更长的清算时间。

10.5 打包交易至区块

验证交易后,比特币节点会将这些交易添加到自己的内存池中。内存池也称作交易池,用来暂存尚未被加入到区块的交 易记录。与其他节点一样,Jing的节点会收集、验证并传递新的交易。而与其他节点不同的是,Jing的节点会把这些交 易整合到一个候选区块中。

​让我们继续跟进,看下Alice从Bob咖啡店购买咖啡时产生的那个区块。Alice的交易在区块 277,316。为了演示本章中提到的概念,我们假设这个区块是由Jing的挖矿系统挖出的,并且继续跟进Alice的交易,因 为这个交易已经成为了新区块的一部分。

Jing的挖矿节点维护了一个区块链的本地副本。当Alice买咖啡 的时候,Jing节点的区块链已经收集到了区块277,314,并继续监听着网络上的交易,在尝试挖掘新区块的同时,也监 听着由其他节点发现的区块。当Jing的节点在挖矿时,它从比特币网络收到了区块277,315。这个区块的到来标志着终 结了产出区块277,315竞赛,与此同时也是产出区块277,316竞赛的开始。

在上一个10分钟内,当Jing的节点正在寻找区块277,315的解的同时,它也在收集交易记录为下一个区块做准备。目前 它已经收到了几百笔交易记录,并将它们放进了内存池。直到接收并验证区块277,315后,Jing的节点会检查内存池中 的全部交易,并移除已经在区块277,315中出现过的交易记录,确保任何留在内存池中的交易都是未确认的,等待被记 录到新区块中。

​Jing的节点立刻构建一个新的空区块,做为区块277,316的候选区块。称作候选区块是因为它还没有包含有效的工作量 证明,不是一个有效的区块,而只有在矿工成功找到一个工作量证明解之后,这个区块才生效。

​现在,Jing的节点从内存池中整合到了全部的交易,新的候选区块包含有418笔交易,总的矿工费为0.09094925个比特 币。你可以通过比特币核心客户端命令行来查看这个区块,如例10-3所示:

例10-3 使用命令行检索区块277,316

$ bitcoin-cli get blockhash 277316
0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4

$ bitcoin-cli getblock 0000000000000001b6b9a13b095e96db41c4a928b97ef2d9\44a9b31b2cc7bdc4

{
"hash" : "0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4",

"confirmations" : 35561,

"size" : 218629,

"height" : 277316,

"version" : 2,

"merkleroot" : "c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e",

"tx" : [

  "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",

  "b268b45c59b39d759614757718b9918caf0ba9d97c56f3b91956ff877c503fbe",

  ... 417 more transactions ...//这一行显示交易数量

 ],

"time" : 1388185914,

"nonce" : 924591752,

"bits" : "1903a30c",

"difficulty" : 1180923195.25802612,

"chainwork" : "000000000000000000000000000000000000000000000934695e92aaf53afa1a",

"previousblockhash" : "0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569"
}

10.5.1 创币交易

区块中的第一笔交易是笔特殊交易,称为创币交易或者coinbase交易。这个交易是由Jing的节点构造并用来奖励矿工们所做的贡献的。

注意:当块277,316开采时,每个块的奖励是25比特币。 此后,已经过了一个“减半”时期。 2016年七月份的奖励为12.5比特币,2020年达到210000区块时,将再次减半。

​Jing的节点会创建“向Jing的地址支付25.09094928个比特币”这样一个交易,把生成交易的奖励发送到自己的钱包。Jing挖出区块获得的奖励金额是coinbase奖励(25个全新的比特币)和区块中全部交易矿工费的总和。

如 例10-4所示:coinbase交易

$ bitcoin-cli getrawtransaction d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f 1

{

"hex" : "01000000010000000000000000000000000000000000000000000000000000000000000000ffffffff0f03443b0403858402062f503253482fffffffff0110c08d9500000000232102aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac00000000",

"txid" : "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",

"version" : 1,

"locktime" : 0,

"vin" : [

  {

  "coinbase" : "03443b0403858402062f503253482f",

  "sequence" : 4294967295

  }

],

"vout" : [

  {

  "value" : 25.09094928,

  "n" : 0,

  "scriptPubKey" : {

  "asm" : "02aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21OP_CHECKSIG",

  "hex" : "2102aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac",

  "reqSigs" : 1,

  "type" : "pubkey",

  "addresses" : ["1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N"

  ]
  }
  }
]
}

与常规交易不同,创币交易没有输入,不消耗UTXO。它只包含一个被称作coinbase的输入,仅仅用来创建新的比特 币。创币交易有一个输出,支付到这个矿工的比特币地址。创币交易的输出将这25.09094928个比特币发送到矿工的比 特币地址,如本例所示的1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N。

10.5.2 Coinbase奖励与矿工费

为了构造创币交易,Jing的节点需要计算矿工费的总额,将这418个已添加到区块交易的输入和输出分别进行求和,然 后用输入总额减去输出总额得到矿工费总额,公式如下:

Total Fees = Sum(Inputs) - Sum(Outputs)

​在区块277,316中,矿工费的总额是0.09094925个比特币。

紧接着,Jing的节点计算出这个新区块正确的奖励额。奖励额的计算是基于区块高度的,以每个区块50个比特币为开 始,每产生210,000个区块减半一次。这个区块高度是277,316,所以正确的奖励额是25个比特币。

​详细的计算过程可以参看比特币核心客户端中的GetBlockValue函数,如例10-5所示:

​例10-5 计算区块奖励—函数GetBlockValue, Bitcoin Core Client, main.cpp

CAmount GetBlockSubsidy(int nHeight, const Consensus::Params
&
 consensusParams){
int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
// Force block reward to zero when right shift is undefined.
if (halvings 
>
= 64)
    return 0;

CAmount nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
nSubsidy 
>
>
 = halvings;
return nSubsidy;
}

​变量Subsidy表示初始奖励额,值为 COIN 常量(100,000,000聪)与50的乘积,也就是说初始奖励额为50亿聪。

紧接着,这个函数用当前区块高度除以减半间隔(SubsidyHalvingInterval 函数)得到减半次数(变量 halvings )。每 210,000个区块为一个减半间隔,对应本例中的区块277316,所以减半次数为1。

变量 halvings 最大值64,如果超出这个值,代码算得的奖励额为0。

然后,这个函数会使用二进制右移操作将奖励额(变量 nSubsidy)右移一位(等同与除以2),每一轮减半右移一次。在这个例子中,对于区块277,316只需要将值为50亿聪的奖励额右移一次,得到25亿聪,也就是25个比特币的奖励额。之所以采用二进制右移操作,是因为相比于整数或浮点数除法,右移操作的效率更高。

​最后,将coinbase奖励额(变量 nSubsidy )与矿工费(nFee)总额求和,并返回这个值。

注意: 如果Jing的挖矿节点把coinbase交易写入区块,那么如何防止Jing奖励自己100甚至1000比特币? 答案是,不正确的奖励将被其他人视为无效,浪费了Jing用于工作证明的投入。 只有这个区块被大家认可,Jing才能得到报酬。

10.5.3创币交易的结构

经过计算,Jing的节点构造了一个创币交易,支付给自己25.09094928枚比特币。

例10-4所示,创币交易的结构比较特殊,与一般交易输入需要指定一个先前的UTXO不同,它包含一个“coinbase“输 入。在之前的章节中,我们已经给出了交易输入的结构。现在让我们来比较一下常规交易输入与创币交易输入。表10-1给出了常规交易输入的结构,表10-2给出的是创币交易输入的结构。

​表10-1 常规交易输入结构

7.png

表10-2,coinbase交易输入结构

6.png

在Coinbase交易中,“交易哈希”字段32个字节全部填充0,“交易输出索引”字段全部填充0xFF(十进制的255),这两个字段的值表示不引用UTXO。“解锁脚本”由coinbase数据代替,数据可以由矿工自定义。

10.5.4 Coinbase数据

​创币交易不包含“解锁脚本“(又称作 scriptSig)字段,这个字段被coinbase数据替代,长度最小2字节,最大100字节。除 了开始的几个字节外,矿工可以任意使用coinbase的其他部分,随意填充任何数据。

以创世块为例,中本聪在coinbase中填入了这样的数据“The Times 03/Jan/ 2009 Chancellor on brink of second bailout for banks“(泰晤士报 2009年1月3日 财政大臣将再次对银行施以援手),表示对日期的证明,同时也表达了对银行系统的不信任。现在,矿工使用coinbase数据实现extra nonce功能,并嵌入字符串来标识挖出它的矿池,这部分内容会在后面的小节描述。

coinbase前几个字节也曾是可以任意填写的,不过在后来的第34号比特币改进提议(BIP34)中 规定了版本2的区块(版本字段为2的区块),这个区块的高度必须跟在脚本操作“push“之后,填充在coinbase字段的起始处。

​我们以例10-4中的区块277,316为例,coinbase就是交易输入的“解锁脚本“(或scriptSig)字段,这个字段的十六进制值 为03443b0403858402062f503253482f。下面让我们来解码这段数据。

​第一个字节是03,脚本执行引擎执行这个指令将后面3个字节压入脚本栈(见表4-1);紧接着的3个字节——0x443b04, 是以小端格式(最低有效字节在先)编码的区块高度。翻转字节序得到0x043b44,表示为十进制是277,316。

​紧接着的几个十六进制数(03858402062)用于编码extra nonce(参见"10.11.1 随机值升位方案"),或者一个随机值,从而求解一个适当的工作量证明。

​coinbase数据结尾部分(2f503253482f)是ASCII编码字符 /P2SH/,表示挖出这个区块的挖矿节点支持BIP0016所定义的 pay-to-script-hash(P2SH)改进方案。在P2SH功能引入到比特币的时候,曾经有过一场对P2SH不同实现方式的投票, 候选者是BIP0016和BIP0017。支持BIP0016的矿工将/P2SH/放入coinbase数据中,支持BIP0017的矿工将 p2sh/CHV 放入他们的coinbase数据中。最后,BIP0016在选举中胜出,直到现在依然有很多矿工在他们的coinbase中填 入/P2SH/以表示支持这个功能。

10-6使用了libbitcoin库(在之前“其他替代客户端、资料库、工具包”中提到)从创世块中提取coinbase数据,并显示 出中本聪留下的信息。libbitcoin库中自带了一份创世块的静态拷贝,所以这段示例代码可以直接取自库中的创世块数 据。

​例10-6 从创世区块中提取coinbase数据​

link:code/satoshi-words.cpp\[\]

​例8-7中,我们使用GNU C++编译器编译源代码并运行得到的可执行文件,

​例8-7 编译并运行satoshi-words示例代码

$ # Compile the code
$  g++ -o satoshi-words satoshi-words.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the executable
$ ./satoshi-words
^D��
<
GS
>
^A^DEThe Times 03/Jan/2009 Chancellor on brink of second bailout for banks

本章未完。

参考内容:
1、本文部分内容摘自《精通比特币》第一版中译本,特此说明并致谢。


我正在发起“和我一起研读《精通比特币第二版》”活动。
我声明,这不是讲课,是讨论,是研读学习,所以需要你的加入,更需要你的参与。
我把这种学习方式作为一次认知学习法[注]的实践。
我希望大家可以和我一起通过将认知学习法与《精通比特币第二版》的研读结合起来,尝试总结出一套可行的区块链知识技能快速入门的方法。
尝试,反思,总结,生成以及组合进行的实践、检验并逐步迭代升级,这是我们的经历也是我们的结果。
这个结果也将成为我们大家一起合作编写的一本书《认知学习比特币》的雏形(所有有价值的讨论都将成为这本书的素材)。
我更希望大家通过本次认知学习方法论的实践以及迭代升级,将这种经过实践的学习方法迁移到更多领域的学习中。
所以希望我们携手走入第二季,第三季......

欢迎扫描二维码加入。

![欲知详情请扫描二维码

精通初稿
Web note ad 1