LSM-Tree 的写放大

本文缺少实际的实践经验。全部来自在网上的“道听途说”和自己的“胡思乱想”。

写放大、读放大、空间放大

基于 LSM-Tree 的存储系统越来越常见了,如 RocksDB、LevelDB。LSM-Tree 能将离散随机写请求都转换成批量顺序写请求(WAL + Compaction),以此提高写性能。但也带来了一些问题:

  • 读放大(Read Amplification)。LSM-Tree 的读操作需要从新到旧(从上到下)一层一层查找,直到找到想要的数据。这个过程可能需要不止一次 I/O。特别是 range query 的情况,影响很明显。
  • 空间放大(Space Amplification)。因为所有的写入都是顺序写(append-only)的,不是 in-place update ,所以过期数据不会马上被清理掉。

RocksDB 和 LevelDB 通过后台的 compaction 来减少读放大(减少 SST 文件数量)和空间放大(清理过期数据),但也因此带来了写放大(Write Amplification)的问题。

  • 写放大。实际写入 HDD/SSD 的数据大小和程序要求写入数据大小之比。正常情况下,HDD/SSD 观察到的写入数据多于上层程序写入的数据。

在 HDD 作为主流存储的时代,RocksDB 的 compaction 带来的写放大问题并没有非常明显。这是因为:

  1. HDD 顺序读写性能远远优于随机读写性能,足以抵消写放大带来的开销。
  2. HDD 的写入量基本不影响其使用寿命。

现在 SSD 逐渐成为主流存储,compaction 带来的写放大问题显得越来越严重:

  1. SSD 顺序读写性能比随机读写性能好一些,但是差距并没有 HDD 那么大。所以,顺序写相比随机写带来的好处,能不能抵消写放大带来的开销,这是个问题。
  2. SSD 的使用寿命和其写入量有关,写放大太严重会大大缩短 SSD 的使用寿命。因为 SSD 不支持覆盖写,必须先擦除(erase)再写入。而每个 SSD block(block 是 SSD 擦除操作的基本单位) 的平均擦除次数是有限的。

所以,在 SSD 上,LSM-Tree 的写放大是一个非常值得关注的问题。而写放大、读放大、空间放大,三者就像 CAP 定理一样,需要做好权衡和取舍。

RockDB 写放大简单分析

说明:RocksDB 支持多种 Compaction。下面分析的是 Level Style Compaction。

RocksDB 的写放大分析:

  • +1 - redo log 的写入
  • +1 - Immutable Memtable 写入到 L0 文件
  • +2 - L0 和 L1 compaction(L0 SST 文件的 key 范围是重叠的,出于性能考虑,一般尽量保持 L0 和 L1 的数据大小是一样的,每次拿全量 L0 的数据和全量 L1 的数据进行 compaction)
  • +11 - Ln-1 和 Ln 合并的写入(n >= 2,默认情况下,Ln 的数据大小是 Ln-1 的 10 倍,见 max_bytes_for_level_multiplier )。

所以,总的写放大是 4 + 11 * (n-1) = 11 * n - 7 倍。关键是 n 的取值。

假设 max_bytes_for_level_multiplier 取默认值 10,则 n 的取值受 L1 的大小和 LSM-Tree 的大小影响。
L1 的大小由 max_bytes_for_level_base 决定,默认是 256 MB。

默认情况下 L0 的大小和 L1 一样大,也是 256 MB。不过 L0 比较特殊,当 L0 的 SST 文件数量达到 level0_file_num_compaction_trigger 时,触发 L0 -> L1 的 comapction。所以 L0 的最大大小为 write_buffer_size * min_write_buffer_number_to_merge * level0_file_num_compaction_trigger

因此,RocksDB 每一层的默认大小为 :
L0 - 256 MB
L1 - 256 MB
L2 - 2.5 GB
L3 - 25 GB
L4 - 250 GB
L5 - 2500 GB

用户可以根据自己的场景需求调整上面的各个参数。

参考文档

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 158,847评论 4 362
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 67,208评论 1 292
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 108,587评论 0 243
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 43,942评论 0 205
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 52,332评论 3 287
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 40,587评论 1 218
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 31,853评论 2 312
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 30,568评论 0 198
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 34,273评论 1 242
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 30,542评论 2 246
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 32,033评论 1 260
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 28,373评论 2 253
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 33,031评论 3 236
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 26,073评论 0 8
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 26,830评论 0 195
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 35,628评论 2 274
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 35,537评论 2 269

推荐阅读更多精彩内容

  • 导读:X-Engine 是集团数据库事业部研发的新一代存储引擎,也是新一代分布式数据库X-DB的根基。在线事务处理...
    技术边城阅读 411评论 0 1
  • 1、RocksDB简介 RocksDB项目起源于Facebook的一个实验项目,该项目旨在开发一个与快速存储器(尤...
    caoxinyiyi阅读 22,889评论 0 4
  • 云朵藏起来的孩子,遇见的那一刻温柔极了。
    野纯阅读 142评论 0 1
  • 维新派领袖之一梁启超在流氓海外之时,为晚清权臣李鸿章作传。洋务运动失败了,维新运动失败了,两者有必然的联系,...
    锦忐阅读 1,436评论 6 5
  • 三月天气晴好,得一闲日。游园青龙寺。 地,取之势,高低错落。 佛家净地,清幽鸟鸣,爽净之气,自是非凡。 碑贴诗词,...
    与人玫瑰阅读 165评论 0 0